Locations:
Search IconSearch

Investigating Mitochondria Transfer in Glioblastoma (Podcast)

New research focuses on tumorigenic aspects of communication among brain cells

Advertisement

Cleveland Clinic is a non-profit academic medical center. Advertising on our site helps support our mission. We do not endorse non-Cleveland Clinic products or services. Policy

Glioblastoma, the most common primary malignant brain tumor, typically presents late, is difficult to treat and has a poor prognosis.

“You can count on one hand the number of FDA-approved drugs for glioblastoma in the past 50 years,” says Justin Lathia, PhD, the Melvin H. Burkhardt Endowed Chair for Neuro-Oncology Clinical Research in Cleveland Clinic’s Lerner Research Institute. “The standard of care was set back in 2005. If you think about the advances in biology and biomedical science since then, progress in this field has been lagging. We are trying to close that gap.”

One of the ways Dr. Lathia’s laboratory is doing so is through exploration of the role of mitochondria transfer in glioblastoma growth. His group recently published a key investigation of this issue in Nature Cancer (as recapped in a prior Consult QD post), and this research is a major focus of a recent episode of Cleveland Clinic’s Cancer Advances podcast.

In the 21-minute episode, Dr. Lathia discusses:

  • The challenges of treating glioblastoma
  • Transfer mechanisms used by astrocytes and other neural cells in cell communication
  • Growth-associated protein 43 expression on astrocytes and glioblastoma cells
  • The role of mitochondria transfer in maintaining glioblastoma and promoting tumor growth
  • How metabolic factors and the tumor microenvironment contribute to tumor growth

Click the podcast player above to listen to the episode now, or read on for a short edited excerpt. Check out more Cancer Advances episodes at clevelandclinic.org/podcasts/cancer-advances or wherever you get your podcasts.

Advertisement

Excerpt from the podcast

Dr. Lathia: One of the tenets of our laboratory is that we’re very interested in what we call the languages and dialects of cell communication. And I would say my background is more in developmental neurobiology and biomedical engineering. When you put those two things together, you tend to view cancer a little bit differently. It’s more than just a series of mutations. It’s more than just a ball of cells growing in the brain. It’s almost like an integrated circuit. And what we have been focusing on is trying to understand how these circuits function, because if we understand that I think it allows us to build better therapies.

Now, how did we get focused on mitochondria? There are examples where mitochondria, which are very important for cell growth and homeostasis, can actually transfer from one cell to another.

If you look in the brain at catastrophic situations like a stroke, it has been demonstrated that astrocytes — which are major support cells in the brain — seem to try to resuscitate neurons by donating whole mitochondria. This is theoretically possible, but no one has really looked at it in glioblastoma. Our laboratory’s interest in the languages and dialects of cell communication prompted us to look at this as a potential way for cells to communicate. And that is really the basis of our work in this area.

Advertisement

Related Articles

smartwatch being strapped to a woman's wrist
December 20, 2024/Neurosciences/Brain Tumor
Can Smartwatch Data Predict Progression and Detect Complications in Patients With Glioblastoma?

Researchers use AI tools to compare clinical events with continuous patient monitoring

Dr. Charles Bernick against a decorative backdrop
December 13, 2024/Neurosciences/Podcast
Considerations Around the Use of Anti-Amyloid Agents for Alzheimer’s Disease (Podcast)

Guidance on patient selection, safety surveillance, choosing among agents and more

macrophages and microglia in glioblastoma tumors
December 3, 2024/Neurosciences/Brain Tumor
Dual Targeting of Macrophages and Microglia Shows Promise in Preclinical Glioblastoma Models

Combining dual inhibition with anti-PD1 therapy yielded >60% rate of complete tumor regression

Raj Sindwani in surgery
Redefining Care: Endoscopic Skull Base Surgery and Beyond (Podcast)

How innovations and advancements in skull base surgery are improving outcomes

Hydrogen sulfide
Can Boosting Hydrogen Sulfide Bolster Standard-of-Care Glioblastoma Therapy to Extend Survival?

Cleveland Clinic researchers pursue answers on basic science and clinical fronts

Light trails coming from African American’s head
Blood-Based Biomarkers for Alzheimer’s Disease in Women (Podcast)

Research project aims to pinpoint biomarkers that could speed diagnosis

23-NEU-4292812-CQD-Hero-Podcast-650×450
November 2, 2023/Neurosciences/Podcast
Neuropsychiatric Challenges Facing Patients With Huntington’s Disease (Podcast)

Behavioral and cognitive symptoms often present early and may go unnoticed

23-CNR-4210971-CQD-Hero-650×450 Dr Yu
October 9, 2023/Cancer/News & Insight
Pathway Cross-Talk Suggests New Approach to Glioblastoma Treatment

New research from Cleveland Clinic helps explain why these tumors are so refractory to treatment, and suggests new therapeutic avenues

Ad