Locations:
Search IconSearch

Vaping: The New Wave of Youth Nicotine Addiction

How to discourage adolescent vaping

650×450-Teen-Vaping

By Perry Dinardo, BA, and Ellen S. Rome, MD, MPH*

Advertisement

Cleveland Clinic is a non-profit academic medical center. Advertising on our site helps support our mission. We do not endorse non-Cleveland Clinic products or services. Policy

*This is an abridged version of an article that originally appeared in the Cleveland Clinic Journal of Medicine.

Vaping devices, introduced to the US market in 2007 as aids for smoking cessation, have become popular among youth and young adults because of their enticing flavors and perceived lack of negative health effects. However, evidence is emerging that vaping may introduce high levels of dangerous chemicals into the body and cause severe lung injury and death.

Electronic cigarettes and other “vaping” devices have been increasing in popularity among youth and adults since their introduction in the US market in 2007.1 This increase is partially driven by a public perception that vaping is harmless, or at least less harmful than cigarette smoking.2 Vaping fans also argue that current smokers can use vaping as nicotine replacement therapy to help them quit smoking.3

We disagree. Research on the health effects of vaping, though still limited, is accumulating rapidly and making it increasingly clear that this habit is far from harmless. For youth, it is a gateway to addiction to nicotine and other substances. Whether it can help people quit smoking remains to be seen. And recent months have seen reports of serious respiratory illnesses and even deaths linked to vaping.4

In December 2016, the US Surgeon General warned that e-cigarette use among youth and young adults in the United States represents a “major public health concern,”5 and that more adolescents and young adults are now vaping than smoking conventional tobacco products.

Advertisement

Youth at risk

In a 2018 survey,7 20.8% of high school students reported using e-cigarettes on more than 1 day in the previous 30 days, a significant increase from 1.5% in 2011. Additionally, 11.3% of high school students reported using 2 or more types of tobacco products; in middle school students, the number was 4.9% — nearly 1 in 20— up from 0.6% in 2011.8

In 2014, for the first time, e-cigarette use became more common among US youth than traditional cigarettes.5The odds of taking up vaping are higher among minority youth in the United States, particularly Hispanics.9 This trend is particularly worrisome because several longitudinal studies have shown that adolescents who use e-cigarettes are 3 times as likely to eventually become smokers of traditional cigarettes compared with adolescents who do not use e-cigarettes.1012If US youth continue smoking at the current rate, 5.6 million of the current population under age 18, or 1 of every 13, will die early of a smoking-related illness.13

Recent outbreak of vaping-associated lung injury

As of November 5, 2019, there had been 2,051 cases of vaping-associated lung injury in 49 states (all except Alaska), the District of Columbia, and 1 US territory reported to the US Centers for Disease Control and Prevention (CDC), with 39 confirmed deaths.4 The reported cases include respiratory injury including acute eosinophilic pneumonia, organizing pneumonia, acute respiratory distress syndrome, and hypersensitivity pneumonitis.14

Most of these patients had been vaping tetrahydrocannabinol (THC), though many used both nicotine-and THC-containing products, and others used products containing nicotine exclusively.4 Thus, it is difficult to identify the exact substance or substances that may be contributing to this sudden outbreak among vape users, and many different product sources are currently under investigation.

Advertisement

One substance that may be linked to the epidemic is vitamin E acetate, which the New York State Department of Health has detected in high levels in cannabis vaping cartridges used by patients who developed lung injury.15 The US Food and Drug Administration (FDA) is continuing to analyze vape cartridge samples submitted by affected patients to look for other chemicals that can contribute to the development of serious pulmonary illness.

How do we discourage adolescent use?

There are currently no established treatment approaches for adolescents who have become addicted to vaping. A review of the literature regarding treatment modalities used to address adolescent use of tobacco and marijuana provides insight that options such as nicotine replacement therapy and counseling modalities such as cognitive behavioral therapy may be helpful in treating teen vaping addiction. However, more research is needed to determine the effectiveness of these treatments in youth addicted to vaping.

Given that youth who vape even once are more likely to try other types of tobacco, we recommend that parents and healthcare providers start conversations by asking what the young person has seen or heard about vaping. Young people can also be asked what they think the school’s response should be: Do they think vaping should be banned in public places, as cigarettes have been banned? What about the carbon footprint? What are their thoughts on the plastic waste, batteries, and other toxins generated by the e-cigarette industry?

New US laws ban the sale of e-cigarettes and vaping devices to minors in stores and online. These policies are modeled in many cases on environmental control policies that have been previously employed to reduce tobacco use, particularly by youth. For example, changing laws to mandate sales only to individuals age 21 and older in all states can help to decrease access to these products among middle school and high school students.

Advertisement

As with tobacco cessation, education will not be enough. Support of legislation that bans vaping in public places, increases pricing to discourage adolescent use, and other measures used successfully to decrease conventional cigarette smoking can be deployed to decrease the public health impact of e-cig arettes. We recommend further regulation of specific harmful chemicals and clear, detailed ingredient labeling to increase consumer understanding of the risks associated with these products. Additionally, we recommend eliminating flavored e-cigarettes, which are the most appealing type for young users, and raising prices of e-cigarettes and similar products to discourage use by youth.

If current cigarette smokers want to use e-cigarettes to quit, we recommend that clinicians counsel them to eventually completely stop use of traditional cigarettes and switch to using e-cigarettes, instead of becoming a dual user of both types of products or using e-cigarettes indefinitely. After making that switch, they should then work to gradually taper usage and nicotine addiction by reducing the amount of nicotine in the e-liquid. Clinicians should ask patients about use of e-cigarettes and vaping devices specifically, and should counsel nonsmokers to avoid initiation of use.

Evidence of harm continues to emerge

Data about respiratory effects, secondhand exposure, and long-term smoking cessation efficacy are still limited, and it remains as yet unknown what combinations of solvents, flavorings, and nicotine in a given e-liquid will result in the most harmful or least harmful effects. In addition, while much of the information about the safety of these components has been obtained using in vitro or mouse models, increasing reports of serious respiratory illness and rising numbers of deaths linked to vaping make it clear that these findings likely translate to harmful effects in humans.

Advertisement

E-cigarettes may ultimately prove to be less harmful than traditional cigarettes, but it seems likely that with further time and research, serious health risks of e-cigarette use will continue to emerge.

References

  1. Sood A, Kesic M, Hernandez M. Electronic cigarettes: one size does not fit all. J Allergy Clin Immunol. 2018; 141(6):1973-1982. doi:10.1016/j.jaci.2018.02.029
  2. Romijnders K, van Osch L, de Vries H, Talhout R. Perceptions and reasons regarding e-cigarette use among users and non-users: a narrative literature review. Int J Environ Res Public Health. 2018;15(6):1190. doi:10.3390/ijerph15061190
  3. Zhu S, Zhuang Y-L, Wong S, Cummins SE, Tedeschi GJ. E-cigarette use and associated changes in population smoking cessation: evidence from US current population surveys. BMJ. 2017;358:j3262. doi:10.1136/bmj.j3262
  4. Centers for Disease Control and Prevention. Outbreak of lung injury associated with e-cigarette use, or vaping. Updated November 5, 2019. www.cdc.gov/tobacco/basic_information/e-Cigarettes/severe- Lung-Disease.html. Accessed November 14, 2019.
  5. US Public Health Services, US Department of Health and Human Services. E-cigarette use among youth and young adults: a report of the Surgeon General. Rockville, MD, U.S. Department of Health and Human Services, 2016. https://e-cigarettes.surgeongeneral.gov/ documents/2016_sgr_full_report_non-508.pdf. Accessed November 14, 2019.
  6. Thomas K, Kaplan S. E-cigarettes went unchecked in 10 years of federal inaction. New York Times Oct 14, 2019; updated November 1, 2019. nytimes.com/2019/10/14/health/vaping-e-cigarettesfda. html
  7. Cullen KA, Ambrose BK, Gentzke AS, Apelberg BJ, Jamal A, King BA. Notes from the field: use of electronic cigarettes and any tobacco product among middle and high school students—United States, 2011–2018. MMWR Morb Mortal Wkly Rep. 2018; 67(45):1276–1277. doi:10.15585/mmwr.mm6745a5
  8. Gentzke A, Creamer M, Cullen K, et al; Centers for Disease Control and Prevention. Vital signs: tobacco product use among middle and high school students—United States, 2011–2018. MMWR Morb Mortal Wkly Rep. 2019; 68(6):157–164. doi:10.15585/mmwr.mm6806e1
  9. Hammig B, Daniel-Dobbs P, Blunt-Vinti H. Electronic cigarette initiation among minority youth in the United States. Am J Drug Alcohol Abuse. 2017; 43(3):306–310. doi:10.1080/00952990.2016.1203926
  10. Primack BA, Soneji S, Stoolmiller M, Fine MJ, Sargent JD. Progression to traditional cigarette smoking after electronic cigarette use among U.S. adolescents and young adults. JAMA Pediatr. 2015;169(11):1018–1023. doi:10.1001/jamapediatrics.2015.1742
  11. Leventhal AM, Strong DR, Kirkpatrick MG, et al. Association of electronic cigarette use with initiation of combustible tobacco product smoking in early adolescence. JAMA. 2015; 314(7):700–707. doi:10.1001/jama.2015.8950.
  12. Wills TA, Knight R, Sargent JD, Gibbons FX, Pagano I, Williams RJ. Longitudinal study of e-cigarette use and onset of cigarette smoking among high school students in Hawaii. Tob Control. 2016;26(1):34–39. doi:10.1136/tobaccocontrol-2015-052705
  13. National Center for Chronic Disease Prevention and Health Promotion (US) Office on Smoking and Health. The health consequences of smoking—50 years of progress: a report of the Surgeon General. Atlanta: Centers for Disease Control and Prevention, 2014. ncbi.nlm.nih.gov/books/NBK179276/pdf/Bookshelf_NBK179276.pdf. Accessed November 14, 2019.
  14. Christiani DC. Vaping-induced lung injury. N Engl J Med. 2019; Sept 6. Epub ahead of print. doi:10.1056/NEJMe1912032
  15. Neel J, Aubrey A. Vitamin E suspected in serious lung problems among people who vaped cannabis. NPR. Sept 5, 2019. www.npr.org/sections/health-shots/2019/09/05/758005409/vitamin-e-suspectedin-serious-lung-problems-among-people-who-vaped-cannabis. Accessed November 14, 2019.
  16. White A. Plans for the first e-cigarette went up in smoke 50 years ago. Smithsonian Magazine. December 2018. www.smithsonianmag.com/innovation/plans-for-first-e-cigarette-went-up-in-smoke-50-years-ago-180970730/
  17. Blundell MS, Dargan PI, Wood DM. The dark cloud of recreational drugs and vaping. QJM. 2018;111(3):145–148. doi:10.1093/qjmed/hcx049
  18. Schulenberg JE, Johnston LD, O’Malley PM, Bachman JG, Miech RA, Patrick ME. Monitoring the future: national survey results on drug use, 1975–2018. 2018 Volume 2. College students & adults ages 19–60. www.monitoringthefuture.org/pubs/monographs/mtfvol2_2018.pdf. Accessed November 14, 2019.
  19. Eggers ME, Lee YO, Jackson J, Wiley JL, Porter J, Nonnemaker JM. Youth use of electronic vapor products and blunts for administering cannabis. Addict Behav. 2017;70:79-82. doi:10.1016/j.addbeh.2017.02.020
  20. Regan AK, Promoff G, Dube SR, Arrazola R. Electronic nicotine delivery systems: adult use and awareness of the “e-cigarette”in the USA. Tob Control. 2013; 22(1):19–23. doi:10.1136/tobaccocontrol-2011-050044
  21. Centers for Disease Control and Prevention. E-cigarette ads and youth. www.cdc.gov/vitalsigns/ecigarette-ads/index.html.
  22. Noel JK, Rees VW, Connolly GN. Electronic cigarettes: a new “tobacco” industry? Tob Control. 2011; 20(1):81. doi:10.1136/tc.2010.038562
  23. US Food and Drug Administration. Deeming tobacco products to be subject to the federal food, drug, and cosmetic act, as amended by the family smoking prevention and tobacco control act; restrictions on the sale and distribution of tobacco products and required warning statements for tobacco products. Federal Register. 2016;81(90), May 10, 2016. www.govinfo.gov/content/pkg/FR-2016-05-10/ pdf/2016-10685.pdf. Accessed November 14, 2019.
  24. Rom O, Pecorelli A, Valacchi G, Reznick AZ. Are e-cigarettes a safe and good alternative to cigarette smoking? Ann NY Acad Sci. 2015;1340:65–74. doi:10.1111/nyas.12609
  25. Zhu SH, Sun JY, Bonnevie E, et al. Four hundred and sixty brands of e-cigarettes and counting: implications for product regulation. Tob Control. 2014; 23(suppl 3):iii3-iii9.doi:10.1136/tobaccocontrol-2014-051670
  26. Kong G, Morean ME, Cavallo DA, Camenga DR, Krishnan-Sarin S. Reasons for electronic cigarette experimentation and discontinuation among adolescents and young adults. Nicotine Tob Res. 2015;17(7):847–854. doi:10.1093/ntr/ntu257
  27. Baca MC. How two Stanford grads aimed for big tech glory and got big tobacco instead. Updated September 4, 2019. The Washington Post. September 4, 2019. www.washingtonpost.com/technology/2019/09/04/how-two-stanford-grads-aimed-big-tech-glory-gotbig-tobacco-instead/. Accessed November 14, 2019.
  28. Huang J, Duan Z, Kwok J, et al. Vaping versus JUULing: how the extraordinary growth and marketing of JUUL transformed the US retail e-cigarette market. Tob Control. 2019; 28(2):146–151.doi:10.1136/tobaccocontrol-2018-054382
  29. Walley SC, Wilson KM, Winickoff JP, Groner J. A public health crisis: electronic cigarettes, vape, and JUUL. Pediatrics. 2019;143(6):pii:e20182741. doi:10.1542/peds.2018-2741
  30. Zernike K. F.D.A. cracks down on “juuling” among teenagers. The New York Times. April 24, 2018. nytimes.com/2018/04/24/health/fda-e-cigarettes-minors-juul.html. Accessed November 14, 2019.
  31. Ramamurthi D, Chau C, Jackler RK. JUUL and other stealth vaporisers: hiding the habit from parents and teachers. Tob Control. 2018 Sep 15;pii:tobaccocontrol-2018-054455. doi:10.1136/tobaccocontrol-2018-054455. [Epub ahead of print]
  32. Willett JG, Bennett M, Hair EC, et al. Recognition, use and perceptions of JUUL among youth and young adults. Tob Control. 2019;28(1):115–116. doi:10.1136/tobaccocontrol-2018-054273
  33. Kaplan S. Juul’s new product: less nicotine, more intense vapor. The New York Times. Nov 27, 2018. www.nytimes.com/2018/11/27/health/juulecigarettes-nicotine.html
  34. JUUL Labs. JUULpods. www.juul.com/shop/pods. Accessed November 14, 2019.
  35. Krishnan-Sarin S, Morean M, Kong G, et al. E-cigarettes and “dripping” among high-school youth. Pediatrics. 2017;139(3):pii:e20163224. doi:10.1542/peds.2016-3224
  36. Kosmider L, Sobczak A, Fik M, et al. Carbonyl compounds in electronic cigarette vapors: effects of nicotine solvent and battery output voltage. Nicotine Tob Res. 2014; 16(10):1319–1326. doi:10.1093/ntr/ntu078
  37. Rawlinson C, Martin S, Frosina J, Wright C. Chemical characterization of aerosols emitted by electronic cigarettes using thermal desorption-gas chromatography-time of flight mass spectrometry. J Chromatogr A. 2017;1497:144–154. doi:10.1016/j.chroma.2017.02.050
  38. Lee MS, LeBouf RF, Son YS, Koutrakis P, Christiani DC. Nicotine, aerosol particles, carbonyls and volatile organic compounds in tobacco- and menthol-flavored e-cigarettes. Environ Health. 2017;16(1):42. doi:10.1186/s12940-017-0249-x
  39. Williams M, Bozhilov K, Ghai S, Talbot P. Elements including metals in the atomizer and aerosol of disposable electronic cigarettes and electronic hookahs. PLoS One 2017; 12(4):e0175430. doi:10.1371/journal.pone.0175430.
  40. Goniewicz ML, Knysak J, Gawron M, et al. Levels of selected carcinogens and toxicants in vapour from electronic cigarettes. Tob Control. 2014;23(2):133–139. doi:10.1136/tobaccocontrol-2012-050859
  41. Drope J, Cahn Z, Kennedy R, et al. Key issues surrounding the health impacts of electronic nicotine delivery systems (ENDS) and other sources of nicotine. CA Cancer J Clin. 2017; 67(6):449–471. doi:10.3322/caac.21413
  42. Jabba SV, Jordt SE. Risk analysis for the carcinogen pulegone in mint- and menthol-flavored e-cigarettes and smokeless tobacco products. JAMA Intern Med. 2019 Sep 16. [Epub ahead of print] doi:10.1001/jamainternmed.2019.3649.
  43. Tierney PA, Karpinsky CD, Brown JE, Luo W, Pankow JF. Flavour chemicals in electronic cigarette fluids. Tob Control. 2016;25(e1):e10–e15. doi:10.1136/tobaccocontrol-2014-052175
  44. Behar RZ, Wang Y, Talbot P. Comparing the cytotoxicity of electronic cigarette fluids, aerosols and solvents. Tob Control. 2017; 27(3):325–333. doi:10.1136/tobaccocontrol-2016-053472
  45. Martin EM, Clapp PW, Rebuli ME, et al. E-cigarette use results in suppression of immune and inflammatory-response genes in nasal epithelial cells similar to cigarette smoke. Am J Physiol Lung Cell Mol Physiol. 2016; 311(1):L135–L144. doi:10.1152/ajplung.00170.2016
  46. Holden VK, Hines SE. Update on fl avoring-induced lung disease. Curr Opin Pulm Med. 2016;22(2):158–164. doi:10.1097/MCP.0000000000000250
  47. Siqueira L; Committee on Substance Use and Prevention. Nicotine and tobacco as substances of abuse in children and adolescents. Pediatrics. 2017;139(1):pii:e20163436. doi:10.1542/peds.2016-3436
  48. England LJ, Bunnell RE, Pechacek TF, Tong VT, McAfee TA. Nicotine and the developing human: a neglected element in the electronic cigarette debate. Am J Prev Med. 2015;49(2):286–293. doi:10.1016/j.amepre.2015.01.015
  49. Modesto-Lowe V, Alvarado C. E-cigs…are they cool? Talking to teens about e-cigarettes. Clin Pediatr (Phila). 2017; 51(10):947–952. doi:10.1177/0009922817705188
  50. Prochaska JJ, Benowitz NL. The past, present, and future of nicotine addiction therapy. Annu Rev Med. 2017; 67:467–486. doi:10.1146/annurev-med-111314-033712.
  51. Hughes JR, Keely J, Naud S. Shape of the relapse curve and long-term abstinence among untreated smokers. Addiction. 2004;99(1):29–38. doi:10.1111/j.1360-0443.2004.00540.x
  52. McMillen RC, Gottlieb MA, Shaefer RM, Winickoff JP, Klein JD. Trends in electronic cigarette use among U.S. adults: use is increasing in both smokers and nonsmokers. Nicotine Tob Res. 2015;17(10):119_1202. doi:10.1093/ntr/ntu213
  53. Bullen C, Howe C, Laugesen M, et al. Electronic cigarettes for smoking cessation: a randomised controlled trial. Lancet. 2013;382(9905):1629–1637. doi:10.1016/S0140-6736(13)61842-5
  54. Hajek P, Phillips-Waller A, Przulj D, et al. A randomized trial of ecigarettes versus nicotine replacement therapy. N Engl J Med. 2019;380(7):629–637. doi:10.1056/NEJMoa1808779
  55. Campagna D, Cibella F, Caponnetto P, et al. Changes in breathomics from a 1-year randomized smoking cessation trial of electronic cigarettes. Eur J Clin Invest. 2016;46(8):698–706. doi:10.1111/eci.12651
  56. Rehan HS, Maini J, Hungin APS. Vaping versus smoking: a quest for efficacy and safety of e-cigarette. Curr Drug Saf. 2018; 13(2):92–101. doi:10.2174/1574886313666180227110556
  57. Zernike K. ‘I can’t stop’: schools struggle with vaping explosion. The New York Times. April 2, 2018. www.nytimes.com/2018/04/02/health/vaping-ecigarettes-addiction-teen.html.
  58. Pepper JK, Ribisl KM, Brewer NT. Adolescents’ interest in trying flavoured e-cigarettes. Tob Control. 2016; 25(suppl 2):ii62–ii66. doi:10.1136/tobaccocontrol-2016-053174
  59. Harrell MB, Loukas A, Jackson CD, Marti CN, Perry CL. Flavored tobacco product use among youth and young adults: what if flavors didn’t exist? Tob Regul Sci. 2017;3(2):168–173. doi:10.18001/TRS.3.2.4
  60. Smith M. Amid vaping crackdown, Michigan to ban sale of flavored e-cigarettes. The New York Times. Sept 4, 2019. www.nytimes.com/2019/09/04/us/michigan-vaping.html?module=inline.
  61. Roditis ML, Halpern-Felsher B. Adolescents’ perceptions of risks and benefits of conventional cigarettes, e-cigarettes, and marijuana: a qualitative analysis. J Adolesc Health. 2015;57(2):179–185. doi:10.1016/j.jadohealth.2015.04.002
  62. Chapman S, Daube M, Maziak W. Should e-cigarette use be permitted in smoke-free public places? No. Tob Control. 2017;26(e1):e3–e4. doi:10.1136/tobaccocontrol-2016-053359
  63. Marcham CL, Springston JP. Electronic cigarettes in the indoor environment. Rev Env Health. 2019;34(2):105–124. doi:10.1515/reveh-2019-0012
  64. Chatham-Stephens K, Law R, Taylor E, et al; Centers for Disease Control and Prevention. Notes from the field: calls to poison centers for exposures to electronic cigarettes—United States, September 2010–September 2014. MMWR Morb Mortal Wkly Report. 2014;63(13):292–293. pmid:24699766

Related Articles

650×450-Physician-Consult-875835776
November 10, 2021/Pediatrics/News & Insights
Need to Consult a Pediatric Specialist? A New Provider-to-Provider Network Can Help

Cleveland Clinic Children’s launches the CARE Line, a peer-to-peer consult service

Microbiome
Early-Life Gut Microbiome Critical to Optimal Health

Evidence-based interventions to support infant health

650×450-Sickle Cell Trait
Advances in Sickle Cell Disease Bring Additional Therapeutic and Curative Options

Disease-modifying medications, haploidentical transplant and gene therapies

650×450-fontan
The Quest to Find the Right FUEL: Are We Close?

Further studies evaluating the use of pulmonary vasodilators in patients with more severe illness are needed

psoriatic arthritis
January 24, 2020/Pediatrics/News & Insights
Diagnosing Down Syndrome-Related Arthritis

Challenges to assessment and treatment

650×450-mental-health-teens-cardiac-arrhythmia
January 20, 2020/Pediatrics/News & Insights
Depression, Anxiety and ADHD in Youth with Cardiac Arrhythmias

Youth with cardiac arrhythmias at significantly higher risk

650×450-Breathing-Treatment
January 16, 2020/Pediatrics/News & Insights
New Cystic Fibrosis Medication May Be a Game Changer

Robust improvements in pulmonary function and quality of life seen in clinical trials

Ad