Locations:
Search IconSearch
September 3, 2020/Neurosciences/Research

Could DBS of the Cerebellar Dentate Nucleus Enhance Post-TBI Rehabilitation?

Preclinical studies will assess whether method developed for stroke recovery curbs deficits after brain injury

20-NEU-1929179 deep-brain-stimulation-for-TBI_650x450

Cleveland Clinic researchers have been awarded a $2.5 million grant from the National Institutes of Health to study the potential therapeutic benefits of deep brain stimulation (DBS) on chronic motor and cognitive deficits associated with post-traumatic brain injury (TBI). The investigations, which were launched July 1, 2020, and will run through June 2025, are being conducted on a laboratory model of TBI and are anticipated to lead to clinical trials.

Advertisement

Cleveland Clinic is a non-profit academic medical center. Advertising on our site helps support our mission. We do not endorse non-Cleveland Clinic products or services. Policy

“This work is in large part an extension of the promising research we have conducted for more than a decade on DBS for stroke rehabilitation,” says co-principal investigator Kenneth Baker, PhD, a researcher in the Department of Neurosciences in Cleveland Clinic’s Lerner Research Institute. “Although there are important differences between TBI and stroke, there are also fundamental common processes involved in chronic recovery, leading us to anticipate that the techniques we’ve developed will benefit TBI rehabilitation.”

A novel approach to long-standing challenges

The Cleveland Clinic research team is part of a three-institution consortium examining potential therapeutic roles of DBS for TBI. Researchers at the other institutions are focusing on minimally conscious patients and trying to arouse them with stimulation to the central thalamus. In contrast, the Cleveland Clinic investigators are using the cerebellar dentate nucleus as the stimulation focus and concentrating on functional patients with persistent motor and cognitive disabilities.

“No effective therapies currently exist for patients with TBI beyond physical, occupational and speech therapy,” says Andre Machado, MD, PhD, Chairman of Cleveland Clinic’s Neurological Institute and co-principal investigator on the grant. “Even moderately enhancing their function could substantially increase their independence and potential for vocational reentry.”

He adds that the team intends to combine DBS with traditional rehabilitation therapies to prompt an additive or even synergistic effect.

Advertisement

Targeting a hub deep in the cerebellum

The cerebellar dentate nucleus is an accessible focus of electrical stimulation and a nodal point of the dentatothalamocortical (DTC) pathway, an important tract connecting the cerebellum and the cortex. The pathway has projections to widespread regions in the contralateral brain, including to cognitive, affective and motor areas.

The researchers hypothesize that chronic activation of the DTC pathway with DBS will modulate plasticity of cortical pathways that were spared in brain injury and promote rehabilitation.

“We have good evidence that DBS of the cerebellar dentate nucleus enhances motor recovery in stroke patients, and we have seen indications that cognition is also improved,” says Dr. Baker. “We believe this method promotes functional changes in the brain that translate to improved clinical outcomes.”

Specific research aims

The grant-funded work will use a controlled cortical impact rat model of TBI to pursue the following goals:

  • Confirm and extend preliminary findings on DBS effects on TBI motor recovery. Evidence from the team’s earlier work using a rodent model of TBI indicates that DBS of the lateral cerebellar nucleus (the rodent homologue of the human cerebellar dentate nucleus) enhances postinjury motor rehabilitation. The current investigations are expanding on this work.
  • Evaluate the potential of DBS to improve post-TBI cognitive function. Differences in learning rates, spatial memory and retention are being assessed.
  • Characterize brain changes following DBS. Intracortical microstimulation and manganese-enhanced MRI are being used to map reorganization of cortical and DTC pathways.
  • Examine cellular and molecular changes in perilesional cortical regions associated with DBS. Expression markers of synaptogenesis are being evaluated.

Advertisement

Additional questions of interest

Because stroke is usually unilateral and TBI is often at least predominantly bilateral, a question that has not been addressed in the stroke investigations is whether unilateral DBS will be sufficient for optimal TBI rehabilitation. The research will compare the effects of unilateral and bilateral DBS.

Another interesting issue is whether DBS over a limited time period will provide enduring benefits. With DBS for Parkinson disease and essential tremor, therapeutic effects stop after stimulation ends. But the team’s experience with DBS and stroke (currently in a phase 1 clinical trial [NCT02835443] with Dr. Machado as principal investigator) has shown that patients tend to reach a plateau in improvement after 5 to 8 months of DBS, after which recovery appears to persist after DBS is turned off.

“We expect that DBS will stimulate the brain to undergo long-lasting reorganization,” Dr. Baker adds. “Our research aims designed to characterize brain changes as well as cellular and molecular changes will help us assess such structural reorganization.”

Advertisement

Related Articles

two brain images with colored dots and red line overlays
December 18, 2025/Neurosciences/Brain Health
Can Cognitive Fluctuations Offer Insight Into Alzheimer’s Disease Neurobiology?

Large NIH-funded investigation is exploring this understudied phenomenon

Dr. Andrew Dhawan against a decorative background with podcast icon overlay
December 16, 2025/Neurosciences/Brain Tumor
Emerging Technologies in Brain Tumor Management (Podcast)

Advances in genomics, spinal fluid analysis, wearable-based patient monitoring and more

two surgeons performing an operation
December 10, 2025/Neurosciences/Case Study
Nerve Transfer Surgery Restores Arm Function to 14-Year-Old With Ewing Sarcoma

Case study of radial-to-axillary nerve transfer for tumor-related deltoid nerve injury

dr. lilyana angelov against a decorative background with a podcast icon overlay
December 2, 2025/Neurosciences/Podcast
Neurological Use of Stereotactic Radiosurgery: Expanding Insights and Indications (Podcast)

An update on the technology from the busiest Gamma Knife center in the Americas

woman painting
Trial: Adaptive DBS Is Tolerable, Effective and Safe

Real-time adjustments may help reduce bothersome dyskinesias

brain scan showing hemorrhage in the putamen
November 18, 2025/Neurosciences/Cerebrovascular
MIS Evacuation Improves Survival in Moderate-Size Putaminal Hemorrhage

Anatomical modeling can identify optimal surgical candidates, study suggests

photo of Dr. Kapoor
November 17, 2025/Neurosciences/Podcast
Complex Tech Is Improving Care for Complex Pain Conditions (Podcast)

Add AI to the list of tools expected to advance care for pain patients

CT scan showing a sharp object penetrating a human brain
November 6, 2025/Neurosciences/Brain Health
Penetrating Brain Injury: Good Outcomes Achievable Even in Grave Cases

New guidelines from Brain Trauma Foundation urge early and aggressive treatment

Ad