Locations:
Search IconSearch
December 18, 2017/Neurosciences/Research

Deep Brain Stimulation of the Ventral Striatal Area for Post-Stroke Pain Syndrome: An MEG Study

Does the clinical benefit manifest electrophysiologically?

By Raghavan Gopalakrishnan, PhD, and Andre Machado, MD, PhD

Advertisement

Cleveland Clinic is a non-profit academic medical center. Advertising on our site helps support our mission. We do not endorse non-Cleveland Clinic products or services. Policy

Post-stroke pain syndrome (PSPS) is an intractable disorder characterized by unrelenting chronic pain and hemiparesis. While traditional analgesia-based therapeutic approaches (e.g., opioids) have largely failed, integrative approaches targeting affective-cognitive spheres have started to show promise.

Recently, a Cleveland Clinic team demonstrated that deep brain stimulation (DBS) of the ventral striatal area, a key node in the networks that modulate emotion, significantly improved the affective sphere of pain and quality of life in patients with PSPS1 (see coverage of that study here). We subsequently examined whether this observed clinical improvement was reflected in the electrophysiological correlates and whether they could serve as objective biomarkers of affective pain response.

To test this hypothesis, we recorded neural substrates of pain anticipation using magnetoencephalography (MEG), a neuroimaging modality that records magnetic fields produced by neural currents with millisecond precision, in 10 patients with PSPS. Recordings were made preoperatively and postoperatively in the “DBS off” and “DBS on” states. Visual countdown cues (numbered 3, 2 and 1 in triangles in Figure 1 below) evoked anticipation as patients awaited a painful stimulus (PS) or nonpainful stimulus (NPS) to their nonaffected or affected extremity (in separate paradigms). Whole-brain event-related responses, a series of fluctuations in neural currents evoked by anticipatory cues, were examined. The responses have specific functional relevance and are labeled P1, N1, P2, N2, etc., depending on the timing and polarity relative to cue onset.

Advertisement

Figure 1. Magnetoencephalographic neural substrate recordings of pain anticipation in 10 patients with post-stroke pain syndrome before and after deep brain stimulation (DBS). See text for details.

Preoperatively, NPS anticipation was remarkably similar to PS anticipation (as shown in the left portion of Figure 1a), possibly due to loss of salience in a network saturated by pain experience. Postoperatively, DBS significantly modulated the early N1 during NPS anticipation, consistent with networks involving restoration of salience and discrimination capacity (Figure 1a, middle and right). Additionally, DBS suppressed the posterior P2 (aberrant anticipatory anxiety) while enhancing the anterior N1 (cognitive and emotional regulation) in treatment responders (Figure 1b).

We conclude that DBS-induced changes in event-related components reflect treatment effects and could serve as biomarkers for treatment efficacy.

Reference

  1. Lempka SF, Malone DA, Hu B, et al. Randomized clinical trial of deep brain stimulation for poststroke pain. Ann Neurol. 2017;81:653-663.

Dr. Machado (machada@ccf.org) is a neurosurgeon and Chairman of Cleveland Clinic’s Neurological Institute. Dr. Gopalakrishnan (gopalar@ccf.org) is Principal Research Engineer in Cleveland Clinic’s Center for Neurological Restoration. They acknowledge Richard Burgess, MD, PhD, of Cleveland Clinic’s Epilepsy Center, for contributions to the work reported here.

Advertisement

Related Articles

illustration of brain plus chemical diagram of tavapadon
April 11, 2025/Neurosciences/Research
TEMPO: Tavapadon Shows Promise as Both First and Adjunct Therapy in Parkinson’s

Dopamine agonist performs in patients with early stage and advanced disease

hand of a person doing a crossword puzzle
March 13, 2025/Neurosciences/Research
Novel Tool Assesses Dynamic Neurocognitive Adaptation Across a Lifetime

Validated scale provides a method for understanding how lifestyle may protect against Alzheimer's

brain illustration with a focused inset section labeled "LCN"
February 25, 2025/Neurosciences/Research
Deep Brain Stimulation for Brain Injury Rehab: Do Benefits Continue After Neurostimulation Stops?

Promising preclinical research indicates functional motor recovery is durable

woman in red shirt standing beside a sign for clinical study recruitment
February 20, 2025/Neurosciences/Research
The Cleveland Clinic Brain Study at 3 Years: Initial Insights, Surprises and Next Steps

A principal investigator of the landmark longitudinal study shares interesting observations to date

Medical illustration of brain
January 6, 2025/Neurosciences/Research
Department of Defense Awards $3.4 Million to Advance a Tool for Assessing Return-to-Duty Readiness After Brain Injury

Cleveland Clinic researchers collaborate with Microsoft to create a product ready for the field

Illustration of a brain
November 6, 2024/Neurosciences/Research
Genomic Analysis Finds Connections Between Transposable Elements and Alzheimer's Disease

Understanding TE involvement is a key to developing new treatments

Man on an exercise bicycle
October 29, 2024/Neurosciences/Research
New Parkinson’s Trial Focuses on Interplay Between Exercise and Genetics

Study aims to inform an enhanced approach to exercise as medicine

researcher in dark laboratory
September 12, 2024/Neurosciences/Research
Preclinical Imaging Research Aims to Help Refine Deep Brain Stimulation for Stroke Recovery

$3.2 million grant will fund use of calcium-based imaging to record neuronal activity in ischemia model

Ad