Locations:
Search IconSearch
October 8, 2019/Cancer

Drug Repurposing for the Treatment of Childhood Leukemia

The effect of mefloquine on acute leukemia cell lines

650×450-Corey-drug-research

By Seth Corey, MD, MPH

Advertisement

Cleveland Clinic is a non-profit academic medical center. Advertising on our site helps support our mission. We do not endorse non-Cleveland Clinic products or services. Policy

Many patients with acute myeloid leukemia (AML) and acute lymphoid leukemia (ALL) of childhood suffer significant adverse effects from conventional chemotherapy agents. Therapy-related toxicities include tumor lysis syndrome, thrombosis, bleeding, infection, mucositis, pancreatitis and hypoglycemia. As a result, we continue to seek additional therapies with less toxicity.

Drug repurposing

Many drugs used to treat adults have not been tested in patients under 18 years old. Developing new drugs is an expensive and time-consuming undertaking, especially for pediatric conditions for which small numbers of patients prevent the economic viability of phase 1 clinical trials. Drug repurposing is one way to speed the process, getting new anti-leukemic agents to market—and to the children who need them—safely and efficiently. In drug repurposing, we test therapies that have already proven to be safe in children, with well-established toxicity profiles and pharmacogenomics as potential agents in different diseases.

One drug with the potential to be repurposed is mefloquine, which previous research has already identified a potential agent against leukemia cells. Mefloquine, an antimalarial drug, may target the process of autophagy in leukemia cells — a survival, recycling mechanism promoting cancer proliferation. We recently completed a study of the in vitro efficacy and mechanism of mefloquine on acute leukemia cell lines.

Preclinical work establishes the efficacy of an old drug for a new indication. Since we already know the toxicity profile of mefloquine, our goal in this research is to whether and how the medication is effective. In this study, we sought to observe cell proliferation, viability, apoptosis and autophagy in AML and ALL cell lines treated with mefloquine. This study was presented at the 2019 American Society of Pediatric Hematology/Oncology Conference in New Orleans.

Advertisement

Mefloquine achieves cell death

We treated AML and ALL cell lines (i.e., NB4 [promyelocytic], U937 [monoblastic], Thp-1 [monoblastic] and Jurkat [T-lymphoblastic) with mefloquine. We measured cell proliferation using the 3-(4,5-Dimethylthiazol-2-yl)-2, 5-Diphenyltetrazolium Bromide (MTT) colorimetric assay and cell viability using the trypan blue (TB) assay. We performed Western blotting on NB4 and U937 cell lines using apoptosis markers PARP-1 and Caspase-3, autophagy markers Atg7, Atg5, P62 and LC3B, and ER stress marker CHOP.

Our hypothesis was that treatment of the cell lines with mefloquine would decrease cell proliferation and viability by targeting autophagy and inducing apoptosis. The MTT assay revealed decreased metabolic activity of the leukemic cells.

We also observed decreased cell proliferation and viability. The leukemic cells did not die from a caspase 3-dependent mechanism.

Our study suggests mefloquine is a potential drug for the treatment of leukemia; however, further investigation is required to determine the mechanism by which it targets autophagy.

Next steps

Our next step in repurposing mefloquine is to secure funding for critical in vivo trials in order to obtain the late pre-clinical data necessary for a successful investigational drug application.

Advertisement

Related Articles

Woman wearing pink scarf
January 17, 2025/Cancer/News & Insight
Exceptional Responders to Metastatic Breast Cancer Treatment Characterized

Findings may guide future research and personalized treatments

Tumor-Infiltrating Lymphocytes (TIL) therapy
January 6, 2025/Cancer/News & Insight
Tumor-Infiltrating Lymphocytes Therapy Now Available for Treating Unresectable or Metastatic Melanoma

Cleveland Clinic Cancer Institute among select group of centers to administer highly personalized treatment

Woman with breast cancer
January 2, 2025/Cancer/News & Insight
Real-World Insights of KEYNOTE-522 Regimen Adoption for Treating Triple-Negative Breast Cancer

Real-world results reporting aims to make treatments safer and more effective

DNA strand
December 31, 2024/Cancer/News & Insight
New Data Further Support Breast Cancer Polygenic Risk Score

Ongoing clinical validation in diverse populations refine breast cancer risk substratification

Dr. Dermawan
December 24, 2024/Cancer/News & Insight
New Genomic Models for Leiomyosarcoma Treatment (Podcast)

Soft tissue pathologist discusses research into incorporating genomic data to improve risk stratification

Dr. Shahzad Raza
December 18, 2024/Cancer/News & Insight
Researchers Explore Prognostic Value of Transcriptomic Data in Multiple Myeloma

Prediction and bioinformatic data could prove valuable for therapeutic interventions targeting this malignancy

3D rendering of bispecific antibodies
December 17, 2024/Cancer/Blood Cancers
Efficacy and Safety Outcomes of Bispecific Antibodies

Study measures real-world outcomes for relapsed or refractory large B-cell lymphoma

Ad