Locations:
Search IconSearch

Harnessing the Power of Light to Kill Surface Pathogens

Study offers solution to hospital-acquired infections

Lab research

A new study led by Vijay Krishna, PhDLerner Research Institute Department of Biomedical Engineering, offers an innovative, feasible and cost- and labor-efficient solution to a problem that challenges many healthcare systems: hospital-acquired infections. The researchers show that a chemical compound, when exposed to visible light, can effectively degrade organic surface contaminants. This discovery may help improve patient health, hospital readmission rates and operating costs.

Advertisement

Cleveland Clinic is a non-profit academic medical center. Advertising on our site helps support our mission. We do not endorse non-Cleveland Clinic products or services. Policy

Pristine titanium dioxide (TiO2) is a chemical compound with many commercial uses ranging from paint pigment to sunscreen to food coloring. It is a photocatalyst, which means it accelerates chemical reactions when exposed to light. TiO2 photocatalysis has been of great interest because it can mineralize contaminants without producing harmful byproducts, opening the door for application as a safe antimicrobial surface coating.

Up until now, TiO2 photocatalysis was only possible when the compound was excited with ultraviolet light, posing a significant barrier for wide-spread adoption of TiO2-based coatings. For the first time, this team of scientists show that contaminants such as bacteria can activate their own degradation when in contact with TiO2 and visible light. Using this technique, they engineered a common coating for indoor surfaces that effectively killed concentrations of the bacteria Staphylococcus aureus.

The researchers coated tiles with TiO2 before adding S. aureus, the model bacteria, which absorbs very low levels of visible light — the wavelengths and colors on the electromagnetic spectrum perceivable with the human eye.

Dr. Krishna and his team discovered that in response to visible light absorption, electrons were transferred from the bacteria to the TiO2, which helped create unstable and highly reactive oxygen species that effectively degraded the bacteria. They also found that rate of degradation directly correlated with the amount of visible light absorbed.

Advertisement

The researchers developed a stable TiO2 formulation that could be easily spray-coated and applied to different surfaces in a test facility. They applied the coating to six different surfaces contaminated with S. aureus and found it reduced the bacterial concentration to benign levels on five of the six surfaces, with effects lasting for 12 months. Importantly, during the first six months of the study, the incidence of acquired infections in the test facility was reduced by 55 percent compared to previous year.

This finding suggests a TiO2 photocatalytic coating may be an effective strategy to reduce the presence of pathogens on hospital equipment and surfaces, and could thereby reduce rates of hospital-acquired infections. Other applications include degradation of organic pollutants to improve air quality and fight the spread of surface-transmitted infections in public places including schools, public transport systems and cruise ships.

This study was published in Scientific Reports and supported by funds from the National Science Foundation and the Cleveland Clinic Foundation. The research was conducted in collaboration with the University of Florida, Gainesville.

Advertisement

Related Articles

microscopy image of kidney stones
Can the Kidney Microbiome Influence Stone Formation?

First full characterization of kidney microbiome unlocks potential to prevent kidney stones

Medical graphic depicting CD55 movement to cell nucleus
Nuclear CD55 Fuels Platinum Resistance in Ovarian Cancer

Researchers identify potential path to retaining chemo sensitivity

gut microbes in intestine
Cleveland Clinic, Tufts University Research Ties Gut Microbial TMAO Pathway to Chronic Kidney Disease

Large-scale joint study links elevated TMAO blood levels and chronic kidney disease risk over time

patient in ICU
Cleveland Clinic and Purdue Seek to Revolutionize Intensive Care Through AI

Investigators are developing a deep learning model to predict health outcomes in ICUs.

Brain mapping
Noninvasive Technology Enhances Ability to Map Brain Activity to Track Behavior Change

Preclinical work promises large-scale data with minimal bias to inform development of clinical tests

Hydrogen sulfide
Can Boosting Hydrogen Sulfide Bolster Standard-of-Care Glioblastoma Therapy to Extend Survival?

Cleveland Clinic researchers pursue answers on basic science and clinical fronts

23-NEU-4390509-CQD-Hero-650×450
Microglial Immunometabolism Endophenotypes Implicated in Sex Differences in Alzheimer’s Disease

Study suggests sex-specific pathways show potential for sex-specific therapeutic approaches

23-CCC-4375928 Quantum Innovation Catalyzer 650×450
A Unique Opportunity to Explore Quantum Computing’s Potential

Cleveland Clinic launches Quantum Innovation Catalyzer Program to help start-up companies access advanced research technology

Ad