Locations:
Search IconSearch

MR Fingerprinting in Epilepsy Garners $3 Million NIH Grant

Pairing of novel imaging technique with post-processing analyses could ultimately reshape care

Researchers at Cleveland Clinic and Case Western Reserve University in Cleveland have received a $3 million, five-year R01 grant from the National Institutes of Health (NIH) to use a novel imaging method known as magnetic resonance (MR) fingerprinting to quantitatively assess brain pathology to improve epilepsy care.

Advertisement

Cleveland Clinic is a non-profit academic medical center. Advertising on our site helps support our mission. We do not endorse non-Cleveland Clinic products or services. Policy

The award supports application of the MR fingerprinting technology for use in patients with epilepsy by experts from Cleveland Clinic’s Epilepsy Center. “We will be using computer post-processing of the MR fingerprinting images, a strategy that our Epilepsy Center has already used successfully with conventional MRI,” says Cleveland Clinic staff scientist Irene Wang, PhD, who is co-principal investigator on the grant along with Dan Ma, PhD, of Case Western Reserve University.

“Our goal is to further develop machine learning algorithms to analyze the images and thereby improve diagnosis in challenging epilepsy cases,” Dr. Wang continues. “We believe this combination of innovations will allow visualization of small, subtle epileptic pathologies that we could not see before. This will aid identification of candidates for epilepsy surgery and help pinpoint where in the brain their seizures originate.”

An example is provided in the images below.

two side-by-side human brain MRIs
Sample images from a patient with right temporoparietal epilepsy in whom MR fingerprinting (right) was able to differentiate active from nonactive periventricular nodular heterotopia lesions when conventional T1-weighted MRI (left) was not. Whereas the conventional MRI shows uniform signal intensity of the bilateral nodules, MR fingerprinting shows distinct T1 signal increase in the nodules at the posterior part of the right lateral ventricle. These nodules were later confirmed to be the seizure onset zone by intracranial EEG monitoring. Images shown with radiological convention.

Dr. Wang notes that promising pilot data from this translational work was recently published in the Journal of Magnetic Resonance Imaging (2019;49:1333-1346), helping to pave the way for the work to be undertaken under the NIH grant.

Advertisement

Related Articles

Photo of Dr. Benjamin Walter
February 2, 2026/Neurosciences/Podcast
The Past, Present and Future of DBS (Podcast)

Rapid innovation is shaping the deep brain stimulation landscape

woman deeply breathing  on a white couch
Brief Biofeedback Protocol Improves Stress and Mood Outcomes in Multiple Sclerosis

Study shows short-term behavioral training can yield objective and subjective gains

woman at desk with earphones smiling at computer screen
January 20, 2026/Neurosciences/Brain Health
Using Shared Medical Appointments to Inform Decisions on Anti-Amyloid Therapy for Alzheimer’s Disease

How we’re efficiently educating patients and care partners about treatment goals, logistics, risks and benefits

Dr. Deepak Lachhwani against a decorative background with a podcast icon overlay
January 16, 2026/Neurosciences/Podcast
How Epilepsy Care Changes as Pediatric Patients Grow (Podcast)

An expert’s take on evolving challenges, treatments and responsibilities through early adulthood

small child walking with a wheeled walker
January 15, 2026/Neurosciences/Epilepsy
Developmental and Epileptic Encephalopathies: Insights From a Large Pediatric Series

Comorbidities and medical complexity underlie far more deaths than SUDEP does

woman in white medical coat talking with another woman in front of a computer screen
January 13, 2026/Neurosciences/Epilepsy
New Program Tackles Dual Challenge of Epilepsy and Dementia in Older Adults

Novel Cleveland Clinic project is fueled by a $1 million NIH grant

Image of Dr. Foldvary-Schaefer
January 2, 2026/Neurosciences/Podcast
Sleep Self-Screening Is Just an App Away (Podcast)

Tool helps patients understand when to ask for help

two brain images with colored dots and red line overlays
December 18, 2025/Neurosciences/Brain Health
Can Cognitive Fluctuations Offer Insight Into Alzheimer’s Disease Neurobiology?

Large NIH-funded investigation is exploring this understudied phenomenon

Ad