Locations:
Search IconSearch

MR Fingerprinting in Epilepsy Garners $3 Million NIH Grant

Pairing of novel imaging technique with post-processing analyses could ultimately reshape care

Researchers at Cleveland Clinic and Case Western Reserve University in Cleveland have received a $3 million, five-year R01 grant from the National Institutes of Health (NIH) to use a novel imaging method known as magnetic resonance (MR) fingerprinting to quantitatively assess brain pathology to improve epilepsy care.

Advertisement

Cleveland Clinic is a non-profit academic medical center. Advertising on our site helps support our mission. We do not endorse non-Cleveland Clinic products or services. Policy

The award supports application of the MR fingerprinting technology for use in patients with epilepsy by experts from Cleveland Clinic’s Epilepsy Center. “We will be using computer post-processing of the MR fingerprinting images, a strategy that our Epilepsy Center has already used successfully with conventional MRI,” says Cleveland Clinic staff scientist Irene Wang, PhD, who is co-principal investigator on the grant along with Dan Ma, PhD, of Case Western Reserve University.

“Our goal is to further develop machine learning algorithms to analyze the images and thereby improve diagnosis in challenging epilepsy cases,” Dr. Wang continues. “We believe this combination of innovations will allow visualization of small, subtle epileptic pathologies that we could not see before. This will aid identification of candidates for epilepsy surgery and help pinpoint where in the brain their seizures originate.”

An example is provided in the images below.

two side-by-side human brain MRIs
Sample images from a patient with right temporoparietal epilepsy in whom MR fingerprinting (right) was able to differentiate active from nonactive periventricular nodular heterotopia lesions when conventional T1-weighted MRI (left) was not. Whereas the conventional MRI shows uniform signal intensity of the bilateral nodules, MR fingerprinting shows distinct T1 signal increase in the nodules at the posterior part of the right lateral ventricle. These nodules were later confirmed to be the seizure onset zone by intracranial EEG monitoring. Images shown with radiological convention.

Dr. Wang notes that promising pilot data from this translational work was recently published in the Journal of Magnetic Resonance Imaging (2019;49:1333-1346), helping to pave the way for the work to be undertaken under the NIH grant.

Advertisement

Related Articles

two brain images with colored dots and red line overlays
December 18, 2025/Neurosciences/Brain Health
Can Cognitive Fluctuations Offer Insight Into Alzheimer’s Disease Neurobiology?

Large NIH-funded investigation is exploring this understudied phenomenon

Dr. Andrew Dhawan against a decorative background with podcast icon overlay
December 16, 2025/Neurosciences/Brain Tumor
Emerging Technologies in Brain Tumor Management (Podcast)

Advances in genomics, spinal fluid analysis, wearable-based patient monitoring and more

two surgeons performing an operation
December 10, 2025/Neurosciences/Case Study
Nerve Transfer Surgery Restores Arm Function to 14-Year-Old With Ewing Sarcoma

Case study of radial-to-axillary nerve transfer for tumor-related deltoid nerve injury

dr. lilyana angelov against a decorative background with a podcast icon overlay
December 2, 2025/Neurosciences/Podcast
Neurological Use of Stereotactic Radiosurgery: Expanding Insights and Indications (Podcast)

An update on the technology from the busiest Gamma Knife center in the Americas

woman painting
Trial: Adaptive DBS Is Tolerable, Effective and Safe

Real-time adjustments may help reduce bothersome dyskinesias

brain scan showing hemorrhage in the putamen
November 18, 2025/Neurosciences/Cerebrovascular
MIS Evacuation Improves Survival in Moderate-Size Putaminal Hemorrhage

Anatomical modeling can identify optimal surgical candidates, study suggests

photo of Dr. Kapoor
November 17, 2025/Neurosciences/Podcast
Complex Tech Is Improving Care for Complex Pain Conditions (Podcast)

Add AI to the list of tools expected to advance care for pain patients

CT scan showing a sharp object penetrating a human brain
November 6, 2025/Neurosciences/Brain Health
Penetrating Brain Injury: Good Outcomes Achievable Even in Grave Cases

New guidelines from Brain Trauma Foundation urge early and aggressive treatment

Ad