National Prostate Cancer Trial Testing Therapy Based on Cleveland Clinic Molecular Discovery

Clinical trial strategy was developed through research on a gene associated with treatment-resistant prostate cancer

23-URL-3595064 CQD 650×450

A new prostate cancer therapy in clinical trials could treat patients resistant to treatment through targeting the disease on a molecular level, based on Cleveland Clinic research.


Cleveland Clinic is a non-profit academic medical center. Advertising on our site helps support our mission. We do not endorse non-Cleveland Clinic products or services. Policy

Prostate cancer affects one out of every nine men. Most patients respond to chemical or surgical castration, which stops the body from producing the androgens that feed tumors. In the vast majority of cases, though, the cancer eventually takes a “castration-resistant” form and starts producing androgens again, leading to recurrence and eventually death.

The treatment in trials, called the MAVERICK Trial, is designed to block a specific protein that allows the body to produce androgens after castration. The research that fueled the treatment was published this week in the Journal of Clinical Investigation.

The trial uses a drug called a tyrosine kinase inhibitor (TKI), a type of targeted therapy designed to disrupt the biological processes that power cancers. There are TKI treatments for other cancers, including leukemia and lung cancer. A goal of using more targeted treatments, like TKI, is to attack the cancer while causing less damage to healthy cells.

Designing TKIs requires research on a cellular and molecular level to understand the mechanisms behind treatment-resistant cancers. Once researchers identify what’s causing treatment resistance, they can move to finding a way to stop it.

“To treat a specific type of cancer, you have to understand how it works,” says Nima Sharifi, MD, Director of the Lerner Research Institute’s Genitourinary Malignancies Research Center. “It’s like figuring out how to stop a runaway car – you have to understand what’s happening under the hood so you know what makes it run and how to stop it.”

Finding the molecular target

Previous research into castration-resistant prostate cancer found the tumors can make their own androgens. Dr. Sharifi’s research program previously discovered that the activation of this pathway depends on how a gene called HSD3B1 is configured. The HSD3B1 gene controls the first step in prostate cancer making these androgens.


A team in Dr. Sharifi’s lab then investigated the biological process through which the prostate cancer synthesizes androgens.

Xiuxiu Li, PhD, is a postdoctoral fellow in Cancer Biology and first author on the paper in JCI. She focused on phosphorylation, a biological process that activates proteins or enzymes. Dr. Li identified a tyrosine kinase called BMX that interacted with the enzyme produced by HSD3B1, was key in phosphorylation and is required for androgens to be made.

Experiments in preclinical models then showed knocking out BMX or halting phosphorylation stopped the androgen production and cancer growth. Those findings identified BMX as the therapeutic target and created the basis for the clinical trial.

The clinical trial, which incorporates genetic testing for the HSD3B1 gene, uses a TKI called Abivertinib. Patients who have the genetic configuration that enables adrenal androgen production will be given the TKI in combination with abiraterone acetate, a novel hormonal agent that has proven in recent trials to improve outcomes for patients with metastatic castration-resistant prostate cancer.

“If outcomes are improved for patients who take this combination – or in patients whose cancer is still progressing after being treated with hormone-based chemotherapy alone, this could be a big step forward in caring for these patients,” says Moshe Ornstein, MD, MA, a genitourinary medical oncologist and site principal investigator at the Cleveland Clinic site. “Likewise, the lab-based translational data that will be developed from this trial will be critical to further understanding the mechanisms of resistance to abiraterone acetate and the role of Abivertinib in prostate cancer.”


The study also has potential implications for breast cancer, Dr. Sharifi says, because the same process with HSD3B1 and BMX is necessary to make estrogens in postmenopausal women.

About the trial

The full name of the trial is “A Phase 2 Study of AbiVERtinib in Patients with Metastatic Castration Resistant Prostate Cancer” under ClinicalTrials.Gov number NCT05361915. The trial is being sponsored through Sorrento Therapeutics, Inc., and is being run through the Prostate Cancer Clinical Trials Consortium (PCCTC).

The trial is not currently recruiting, but those seeking more information can contact Dr. Ornstein.

Editor’s Note: This article was published originally by Cleveland Clinic Lerner Research Institute.

Related Articles

gut microbes in intestine
Cleveland Clinic, Tufts University Research Ties Gut Microbial TMAO Pathway to Chronic Kidney Disease

Large-scale joint study links elevated TMAO blood levels and chronic kidney disease risk over time

patient in ICU
Cleveland Clinic and Purdue Seek to Revolutionize Intensive Care Through AI

Investigators are developing a deep learning model to predict health outcomes in ICUs.

Multi-Ancestry Genetic Study of Parkinson’s Disease Identifies New Risk Genes in Pursuit of Novel Treatment Targets

International collaboration is most genetically diverse study of the disease to date

Noninvasive Technology Enhances Ability to Map Brain Activity to Track Behavior Change

Preclinical work promises large-scale data with minimal bias to inform development of clinical tests

Can Boosting Hydrogen Sulfide Bolster Standard-of-Care Glioblastoma Therapy to Extend Survival?

Cleveland Clinic researchers pursue answers on basic science and clinical fronts

Microglial Immunometabolism Endophenotypes Implicated in Sex Differences in Alzheimer’s Disease

Study suggests sex-specific pathways show potential for sex-specific therapeutic approaches

23-CCC-4375928 Quantum Innovation Catalyzer 650×450
A Unique Opportunity to Explore Quantum Computing’s Potential

Cleveland Clinic launches Quantum Innovation Catalyzer Program to help start-up companies access advanced research technology

Light trails coming from African American’s head
Blood-Based Biomarkers for Alzheimer’s Disease in Women (Podcast)

Research project aims to pinpoint biomarkers that could speed diagnosis