Advertisement
Preliminary findings may augur risk of long-term brain decline
Plasma concentrations of two brain proteins — neurofilament light chain (NFL) and tau — are elevated in individuals exposed to repetitive head impacts, according to an analysis of longitudinal results from a cohort of the Cleveland Clinic-led Professional Fighters Brain Health Study.
Advertisement
Cleveland Clinic is a non-profit academic medical center. Advertising on our site helps support our mission. We do not endorse non-Cleveland Clinic products or services. Policy
“We found that higher levels of both proteins may be associated with repetitive head trauma,” says lead investigator Charles Bernick, MD, MPH, who presented the findings at the American Academy of Neurology’s Sports Concussion Conference in Jacksonville, Florida, in July. “This is part of a study to ultimately determine whether professional fighters are at risk of long-term neurological complications, and which are at greatest risk. These findings set the stage for research on how these proteins may be used to monitor traumatic brain injury (TBI) and its consequences over time.”
NFL and tau are components of nerve fibers that are detectable in blood when the fibers are injured. While both proteins had been viewed as potential markers of acute neural injury, less had been known about their application in chronic mild TBI, explains Dr. Bernick, Associate Director of Cleveland Clinic Lou Ruvo Center for Brain Health in Las Vegas.
To better assess that question, Dr. Bernick and colleagues evaluated a cohort of active and retired professional fighters (boxers and mixed martial arts combatants) and controls not involved in combat sports, all of whom participate in the larger Professional Fighters Brain Health Study. The researchers obtained blood samples from all participants at baseline and at annual study visits for up to five years. Protein concentrations were analyzed in blinded fashion using the ultrasensitive Simoa platform.
Participants also underwent brain MRI and computerized cognitive testing on an annual basis.
Advertisement
The cohort consisted of:
Outcomes of interest included baseline differences in the blood markers among the groups, the relationship of blood marker levels with the amount and timing of repetitive head impact exposure, changes in marker levels over time, and the relationship of marker levels with MRI volumetric measurements and cognitive test performance.
Key results reported by Dr. Bernick at the concussion conference included the following:
“These results suggest that higher plasma levels of both neurofilament light chain and tau may be associated with repetitive head trauma,” observes Dr. Bernick. “It appears that neurofilament light chain may be more sensitive to acute TBI while tau may be a better metric of cumulative damage over time.”
Advertisement
He notes that the study is preliminary and is limited by the self-reported nature of the data on recent sparring and the differences in age between active and retired fighters.
“We don’t yet know whether increasing levels of tau over time indicate a risk of long-term neurological decline,” Dr. Bernick says. “Longer follow-up is needed to address that question, along with replication in other cohorts. But measurement of these brain proteins might one day help us detect brain injury early, predict who will develop complications and better monitor brain injury over time.”
Advertisement
Advertisement
Understanding TE involvement is a key to developing new treatments
Study aims to inform an enhanced approach to exercise as medicine
$3.2 million grant will fund use of calcium-based imaging to record neuronal activity in ischemia model
New phase 1 trial showcases Neurological Institute’s interdisciplinary study capabilities
Chronic stress, asymptomatic disease affect different brains differently
Real-world claims data and tissue culture studies set the stage for randomized clinical testing
New grant-funded investigation illustrates impact and reach of Cleveland Clinic Brain Study
How the new longitudinal investigation could become the Framingham Heart Study of brain health