Locations:
Search IconSearch
September 21, 2021/Cancer/Radiation Oncology

Research Proves Feasibility of New Cancer Treatment Approach

Radiation planning technique safely reduces toxicity

RTOG_690-x-380-650×358

Researchers from Cleveland Clinic and OhioHealth have published results from a first-in-human trial evaluating feasibility of Temporally Feathered Radiation Therapy (TFRT), which is designed to reduce the toxicity of radiation treatment.

Advertisement

Cleveland Clinic is a non-profit academic medical center. Advertising on our site helps support our mission. We do not endorse non-Cleveland Clinic products or services. Policy

The research, appearing in Radiotherapy & Oncology, proved TFRT’s feasibility in clinical workflow. Additionally, assessments of treatment toxicities and radiation dosage comparisons to a standard radiotherapy plan were described.

TFRT is a novel technique for the planning and optimization of radiotherapy that considers the nonlinear aspects of normal tissue repair to manage toxicity. The technique is designed to reduce radiation-induced toxicities by optimizing the time through which radiation is delivered and consequently improves normal tissue recovery. Radiation-induced toxicity is a major contributor to impacting a patients’ quality of life and often a dose-limiting factor in the treatment of cancer with radiation therapy.

“We are excited that the complex TFRT technique, which uses current planning systems, was able to be delivered safely and in a standard clinical workflow,” said Jacob G. Scott, M.D., DPhil, a Cleveland Clinic radiation oncologist and the inventor of TFRT. “A larger trial with toxicity as the primary endpoint will allow us to truly study the efficacy of the approach. Collaboration will be important as we work to integrate TFRT into planning systems to expand automation and wider adoption into clinical practice.”

Study specifics

In this study, five patients with head and neck squamous cell carcinoma were treated with TFRT. The primary endpoint was feasibility of TFRT planning as defined by radiation start within 15 days of treatment planning. Secondary endpoints included estimates of toxicity.

Advertisement

The primary endpoint was met when patients were successfully treated with TFRT techniques without causing delays in radiation commencement. For patients who received TFRT, the median time from treatment planning to radiation start was 10 business days – not outside of standard timelines. The average time required for radiation planning was six days. The organs feathered included oral cavity, each submandibular gland, each parotid gland, supraglottis, and posterior pharyngeal wall. There were no significant deviations from standard planning, and toxicity was no more than expected – but we expect a larger trial to show reductions in toxicity without effecting cure rates.

“Radiation oncologists and physicists have made amazing advances in shaping the radiation dose to organs and tissue near a patient’s tumors, leading to effective treatments with less toxicity,” added Shireen Parsai, M.D., a radiation oncologist at OhioHealth who led this research during her residency at Cleveland Clinic. “TFRT takes advantage of the differential repair of tumors vs. healthy tissue by modulating how the dose is delivered to nearby tissue over time. This approach gives normal tissue more time to heal, allowing us, in theory, to deliver the same curative doses of radiation with less detriment to the patient’s quality of life.”

Advertisement

Related Articles

Shahzad Raza, MD
December 18, 2025/Cancer/Blood Cancers
Talquetamab Provides Lifesaving Bridge to CAR T-Cell Therapy

Bispecific antibody bridging therapy deepens durability of BCMA CAR T-cell therapy without overlapping toxicities in patients with relapsed/refractory multiple myeloma

Dr. Raza
December 16, 2025/Cancer/Blood Cancers
Dual Bispecifics May Redefine Management of Extramedullary Myeloma

Phase 2 study brings pivotal advances in treatment efficacy and safety for the most challenging-to-treat population

CAR T-cell therapy
December 15, 2025/Cancer/Blood Cancers
Case Study: Patient Remains Disease Free Five Years After Allogenic CAR T-Cell Therapy

Patient with quadruple refractory multiple myeloma achieves complete response with cell therapy

J. Joseph Melenhorst, PhD
December 12, 2025/Cancer/Blood Cancers
Researchers Identify Predictors of Response to CAR T-Cell Therapy in B-Cell Non-Hodgkin’s Lymphoma

Distinct baseline immune profiles can predict response and resistance to different types of CAR-T cells.

church bus tour
December 9, 2025/Cancer/News & Insight
Novel Community Campaign Increases Venous Thromboembolism Awareness

National Blood Clot Alliance collaborates with faith-based organizations on first-of-its-kind church bus tour

Dr. Gerds
December 8, 2025/Cancer/News & Insight
AI Screening Platform Accelerates Trial Recruitment in Polycythemia Vera

AI-driven tools can streamline enrollment and improve efficiency across clinical trials.

PET scan after CAR T-cell therapy
December 5, 2025/Cancer/Blood Cancers
Case Study: Overcoming Communication Barriers to Enroll Patient in CAR T-Cell Therapy Clinical Trial

Patient achieves complete remission from aggressive marginal zone lymphoma with liso-cel

Dr. Roesch
November 28, 2025/Cancer
Management of Pregnancy-Associated Breast Cancer (Podcast)

Supporting patients during pregnancy and beyond

Ad