Locations:
Search IconSearch
January 11, 2016/Pulmonary

Cost Effectiveness of Bronchial Thermoplasty in Severe Uncontrolled Asthma

Patient population, costs determine practicality

Bronchial Thermoplasty

By Joe Zein, MD, Sumita Khatri, MD, and Belinda Udeh, PhD, MPH

Advertisement

Cleveland Clinic is a non-profit academic medical center. Advertising on our site helps support our mission. We do not endorse non-Cleveland Clinic products or services. Policy

Bronchial thermoplasty (BT) was approved by the Food and Drug Administration (FDA) in 2010 based on clinical trials demonstrating its effectiveness. Patients with severe persistent asthma are eligible if they are at least 18 years old and their asthma is not well-controlled with inhaled corticosteroids and long-acting beta-agonists. However, the cost-effectiveness of this procedure in treating this patient population remains uncertain.

Exploring BT’s cost-effectiveness

To further explore this question, we analyzed data using a Markov decision analytic model to estimate the cost effectiveness of BT as compared with usual care. We abstracted our baseline case characteristics from the AIR2 trial (Asthma Intervention Research 2), the only randomized controlled trial published to date.

Although only five-year outcomes data are available from the clinical trial, clinical effectiveness of BT is expected to last beyond five years. We explored the value of BT over a 10-year period after treatment. Further, we assumed the effect of BT remained constant for the first five years, in line with current clinical trial data, and then conservatively estimated that its clinical effect would decrease at a rate of 20 percent for every subsequent year over the next five years. The main outcome measure was cost in 2013 dollars per additional quality adjusted life year (QALY).

We found that treatment with BT resulted in 6.40 QALYs and $7,512 in cost compared with 6.21 QALYs and $2,054 for usual care. The incremental cost-effectiveness ratio (ICER) for BT at 10 years was $29,821/QALY. At five years, BT remained cost-effective with an ICER of $45,300/QALY. At both time points, the cost/QALY fell below the society “willingness to pay” benchmark of $50,000/QALY.

Advertisement

Caveats to affordability

We also conducted sensitivity analysis to assess the combined effect of all uncertainties on the model and to explore the results within the context of population variability. At a society willingness to pay per QALY of $50,000, BT continues to be cost-effective unless the probability of severe asthma exacerbation drops below 0.63 exacerbation per year or the cost of BT rises above $10,384 total for the complete BT treatment (consisting of three separate bronchoscopic procedures).

Indications for BT

Thus, our findings suggest that the cost-effectiveness of BT depends mostly on the probability of asthma exacerbation in the usual care group and on the procedure cost (Figure). To be cost-effective, BT should be used in patients with high asthma exacerbation rates but clinical capacity to safely tolerate BT.

15-PUL-3015-BronchialThermoplasty-Tornado-CQD

Finally, the cost-effectiveness of BT drops with older patient age due to higher background mortality. Our model population was based on the patient demographics listed in the AIR2 trial with the cohort entering the simulation at age 41, the mean age of the AIR2 trial population. Therefore, the ICER for BT at 10 years of $29,821/QALY cannot be generalized to an older patient population. In that regard, the ICER for BT becomes $157,227 per QALY for individuals who are 65, suggesting that BT may not be cost-effective for older patients with asthma.

Based on our findings, we recommend using BT for younger patients meeting the FDA indication criteria who are at high risk of asthma exacerbation. Continuing to follow beyond five years patients whose severe asthma has been treated with this relatively new procedure will aid the further evaluation of its long-term cost-effectiveness.

Advertisement

Dr. Udeh, a staff health economist, can be reached at 216.445.6214 or udehb@ccf.org.

Advertisement

Related Articles

Bronchoscopy showing silicone stent
December 6, 2024/Pulmonary/Critical Care
Keeping Up With Advances in Airway Stenting

New developments offer providers more sophisticated options

Doctor looking at chest x-ray
August 29, 2024/Pulmonary/Lung Transplant
Lung Transplant Can Avert Significant Health Care Costs for Some Patients, Study Finds

Exploring the cost-effectiveness of end-of-life treatment options

Doctor listening to patient with stethoscope
Recognizing Immune Mediated Myositis-Associated Lung Disease

Treatments can be effective, but timely diagnosis is key

asthma inhaler
August 16, 2024/Pulmonary/Asthma
Leveraging Machine Learning to Enhance Asthma Phenotyping: Implications for Precision Medicine

New research classifies asthma into five clinically important subphenotypes

Patient sleeping
August 7, 2024/Pulmonary/Research
Nocturnal Hypoxemia Linked to Muscle Wasting in COPD Patients

Findings show profound muscle loss variance between men and women

patient's blood pressure being checked
August 5, 2024/Pulmonary/Critical Care
Why Can’t Patient Outcomes Be Predicted More Like the Weather?

Dynamic modeling improves the accuracy of outcome predictions for ICU patients

Organ donor form
New Transplant Simulation Model Framework Addresses Limitations of Current Models

The agent-based model aims to improve prediction accuracy

Clostridioides difficile bacteria
May 28, 2024/Pulmonary/Research
New Study Points to Feasibility of Breath-Based Diagnostic Test for C. diff

VOC analysis could provide biological insight into risk factors associated with CDI

Ad