August 1, 2023/Cancer/Research

Measuring Residual Disease in Leukemias: Improving on Current Assays is a Focus

Single-cell next-gen sequencing showing promise to improve sensitivity of MRD testing

23-CNR-3965756-CQD-Hero-650×450 Dr Molina

Assessment of measurable residual disease (MRD) is recommended for routine follow-up of patients who have undergone allogeneic hematopoietic stem cell transplant (HSCT) as treatment for leukemias. Cleveland Clinic researchers are exploring single-cell next-generation sequencing (NGS) in an effort to overcome limitations with existing methodologies to monitor MRD in acute myeloid leukemia (AML) and myelodysplastic syndromes. They highlight the latest advances in MRD detection in a paper in Cancers.

Advertisement

Cleveland Clinic is a non-profit academic medical center. Advertising on our site helps support our mission. We do not endorse non-Cleveland Clinic products or services. Policy

Measurable residual disease refers to persistence of leukemic cells in the bone marrow or peripheral blood of patients in morphologic complete remission after treatment. In the context of transplantation, MRD testing can be performed prior to HSCT to establish the baseline disease level for improved risk stratification, as the presence of MRD correlates with worse survival and a higher risk of relapse. Pre-transplantation, MRD status can also guide therapeutic interventions, such as the intensity of pre-transplant conditioning or post-transplant chemotherapy. Post-transplantation, MRD monitoring can provide objective evidence of treatment response.

Current assays for MRD detection rely on either immunophenotyping via multiparametric flow cytometry (MFC) or molecular testing. Multiparametric flow cytometry has a sensitivity of about 10-4, (capable of detecting one abnormal cell in 10,000 cells). “We’re limited by our best tests. We don’t know if there’s a lower level of disease that we can’t yet detect, and whether we can detect disease at a lower level with more sensitive techniques,” says John C. Molina, MD, Associate Staff Physician, Division of Leukemia & Myeloid Disorders at Cleveland Clinic, and a co-author on the paper.

Limitations of current molecular tests

Molecular testing is used to detect leukemia-defining mutations but a specific assay is required for every mutation. Bulk NGS of MRD has the ability to evaluate simultaneously multiple regions often mutated in AML, allowing for better inference of clonal and subclonal MRD burden. Serial bulk NGS measurements can monitor changing mutational dynamics clones with treatment.

One concern with molecular testing to monitor MRD is detection of specific preleukemic clones and labeling them as persistent disease, with the risk of modifying therapy inappropriately based on this assessment.

Advertisement

“A mutation detected by current assays may be part of the leukemia or it may be a mutation that led to the leukemia and is no longer an actual leukemic cell,” says Dr. Molina. “Also, certain mutations detected with current assays may not be indicative of residual disease that affects outcomes [truly positive], which can influence the decision to take patients to transplant. It’s a challenge to know that what we’re detecting is persistence of disease.”

He continues, “We don’t know with certainty what level of MRD positivity is clinically significant. Does every patient have to have undetectable MRD, or are there certain levels of MRD for which transplant outcomes won’t be negatively affected?”

Single-cell NGS sequencing methods allow for tagging molecular AML fragments specific to individual cells, and is becoming the standard for probing intratumoral heterogeneity. However, single-cell sequencing is time-consuming, and single-cell DNA sequencing requires whole-genome amplification from a low DNA amount.

Presently, single-cell NGS is at the level of research and investigation. The clinical utility of single-cell sequencing in monitoring MRD has shown promising results in AML/MDS. “The technology is wonderful, and I think we’ll get there, but we have to scale up the technology,” he says. “Many of the limitations of single-cell NGS at this point are cost-associated. It is currently limited to research and clinical trials. The next step is to broaden the application of this technology to be able to use it efficiently.”

Advertisement

MEASURE study

Cleveland Clinic will be participating in the national Molecular Evaluation of AML Patients After Stem Cell Transplant to Understand Relapse Events (MEASURE), which is a prospective determination of the clinical utility of MRD testing for relapse and survival of patients with AML undergoing allogeneic hematopoietic cell transplantation.

The goal is to obtain a better understanding of factors that lead to relapse after treatment, and the performance of technologies such as single-cell RNA and DNA sequencing, using data from a large population of AML patients. “We would like to gain the information to then incorporate these technologies in the future, in terms of treatment protocols and effective MRD monitoring,” says Dr. Molina.

Subjects will be asked to provide blood samples at intervals up to 18 post-transplant. Additional blood and marrow samples will be requested at relapse if it occurs.

Related Articles

Doctors working on MGUS screening study
March 18, 2024/Cancer/Research
Pilot Study Aims for Early Identification of Multiple Myeloma Precursor Among Black Patients

First-of-its-kind research investigates the viability of standard screening to reduce the burden of late-stage cancer diagnoses

Physician with patient
March 6, 2024/Cancer/Research
Targeting Uncontrolled Erythrocytosis in Polycythemia Vera with Rusfertide

Study demonstrates ability to reduce patients’ reliance on phlebotomies to stabilize hematocrit levels

Doctor measuring patient's waist size
February 26, 2024/Cancer/Research
Impact of Obesity on GVHD & Transplant Outcomes in Hematologic Malignancies

Findings highlight an association between obesity and an increased incidence of moderate-severe disease

Physician with patient
February 21, 2024/Cancer/Research
Strategies for Improving Clinical Trial Equity

Cleveland Clinic Cancer Institute takes multi-faceted approach to increasing clinical trial access

How antibody drug conjugates work
February 13, 2024/Cancer/Research
Real-World Use of Trastuzumab Deruxtecan

Key learnings from DESTINY trials

24-CNR-4545611-CQD-Podcast-967×544
February 1, 2024/Cancer/Research
Possibilities of CRISPR Technology (Podcast)

Gene editing technology offers promise for treating multiple myeloma and other hematologic malignancies, as well as solid tumors

Disparities in multiple myeloma
January 25, 2024/Cancer/Research
Major Study Identifies Global Disparities in Drug Toxicity for Multiple Myeloma Treatment

Study of 401,576 patients reveals differences in cancer burdens as well as overall survival

Dr. Shilpa Gupta
December 27, 2023/Cancer/Research
A New Standard Emerges in Advanced Urothelial Carcinoma After Decades of First-Line Chemotherapy

Enfortumab plus pembrolizumab reduced risk of death by 53% compared with platinum-based chemotherapy

Ad