February 2, 2015

Microglial Inflammation: A Promising Target in Neuropathic Pain Also Plays Role in Memory Deficiency

Pursuing a potentially treatable common pathway

Naguib-690×380

Promising research by Cleveland Clinic investigators demonstrates that microglial inflammation is a common pathway ‒ and a potentially treatable one ‒ for neuropathic pain and other treatment-resistant neuroinflammatory conditions, including Alzheimer disease (AD).

Advertisement

Cleveland Clinic is a non-profit academic medical center. Advertising on our site helps support our mission. We do not endorse non-Cleveland Clinic products or services. Policy

“Microglial inflammation is a mechanism of many CNS disorders ‒ neuropathic pain, AD, multiple sclerosis, parkinsonism, you name it,” says lead researcher Mohamed Naguib, MD, of Cleveland Clinic’s Anesthesiology Institute, which includes the Department of Pain Management.

His team has synthesized a molecule called MDA7, a cannabinoid type 2 (CB2) receptor-selective agonist, to inhibit microglial inflammation in hopes of effectively treating neuropathic pain and other conditions. “MDA7 prevents microglial activation and recruitment, which represent the elemental pathway of microglial inflammation,” explains Dr. Naguib.

Efficacy in a Rodent Model of Chemo-Induced Neuropathic Pain

The researchers demonstrated as much in a 2012 paper in Anesthesia and Analgesia (2012;114[5]:1104-1120) reporting findings from a rodent model of paclitaxel-induced neuropathy, which is associated with activation of microglia followed by the activation and proliferation of astrocytes and the expression and release of pro-inflammatory cytokines. They found that MDA7 prevented paclitaxel-induced allodynia in rats and mice in a dose- and time-sensitive fashion without compromising paclitaxel’s anticancer effects. MDA7’s anti-allodynia effect was absent in CB2–/– mice and was countered by CB2 antagonists, which suggests it directly involves CB2 receptor activation.

Because all neuropathic pain shares the mechanism of microglial inflammation, Dr. Naguib expects the same effect in neuropathic pain types outside the chemotherapy setting. “We started with chemotherapy-induced neuropathy because it’s an area of unmet therapeutic need,” he says.

Similar Efficacy in CRPS

His team recently finished a study using a vascular occlusion model in the rat to replicate another form of chronic pain with a microglial inflammation mechanism, complex regional pain syndrome (CRPS). MDA7 was again highly effective, both at the molecular level and in terms of phenotypic response. They expect to submit the CRPS study for publication this year.

Advertisement

Promise for Alzheimer Disease

The wider biomedical community learned of the team’s work via an exciting study in February’sNature Neuroscience (2014;17[2]:223-231) linking microglia-mediated inflammatory changes in a postsynaptic protein, neuroligin 1, to amyloid-associated memory deficiency in rodents.

Current models of AD hold that amyloid plaques accumulate in the brain, overwhelming the microglia that serve as the nervous system’s main form of active immune defense. When the microglia cannot clear out amyloid rapidly enough, they become inflamed, which leads to gene modifications in the brain.

“As our research into microglial inflammation advanced, it became clear how important this inflammation is to a variety of disease processes, which led down the Alzheimer path,” says Dr. Naguib.

His team’s Nature Neuroscience study showed that the microglial inflammation-induced gene changes in the brain include suppressed expression of the neuroligin 1 protein ‒ and that this suppression leads to hippocampal glutamatergic dysfunction and memory deficiency in rodents. The effects were ameliorated by inhibiting microglial activation. “These findings link neuroinflammation, synaptic efficacy and memory, thus providing insight into the pathogenesis of amyloid-associated diseases,” the researchers concluded.

Dr. Naguib notes that much research remains, but the findings suggest that MDA7 represents a promising new therapeutic approach to AD and other conditions involving microglia-mediated neuroinflammation, such as multiple sclerosis and Parkinson disease.

Advertisement

Next Steps

In the near term, the researchers are focused on gaining funding to move MDA7 into phase 1 human studies for chemotherapy-induced neuropathy, which they hope to begin by 2015. Studies of MDA7 in animal models of AD will take longer, due to the longitudinal nature of AD, but Dr. Naguib says the team is committed to pursuing that research as well.

Mohamed Naguib, MD is a professor of anesthesiology in the Cleveland Clinic Lerner College of Medicine of Case Western Reserve University.

Related Articles

22-NEU-2959102-CQD-Hero-650×450
June 15, 2022
MINDS Study Will Assess Lifestyle Interventions for Slowing Brain Pathology in Preclinical Stages

New grant-funded investigation illustrates impact and reach of Cleveland Clinic Brain Study

22-NEU-2671014-CQD-650×450-Type
March 9, 2022
A Closer Look at the Cleveland Clinic Brain Study

How the new longitudinal investigation could become the Framingham Heart Study of brain health

20-NEU-1959738 powered-exoskeleton-for-gait-training_650x450
October 23, 2020
Study Signals Potential of Powered Exoskeleton for Gait Training in Multiple Sclerosis

Pilot findings show good patient acceptance and safety, early hints of efficacy

20-NEU-1990660-sleep-symptoms-in-health-workers-650×450
October 21, 2020
Electronic Screening for Sleep Disorders Among Healthcare Workers Is Feasible – and Sorely Needed

Study finds high prevalence of symptoms, willingness to seek treatment

20-NEU-1946228 neurofilaments_650x450
September 9, 2020
Serum Neurofilament Light as a Progressive MS Biomarker: Guideposts for the Road Ahead

Panel outlines research priorities around a promising alternative to imaging markers

20-NEU-1951118_Impella-temporary-LVAD_650x450_ (1)
September 4, 2020
Study Finds Clues to Acute Neurologic Events With Short-Term Impella Cardiac Support

Suspected factors include antithrombotic intensity, time on device, presence of thrombocytopenia

20-NEU-1929179 deep-brain-stimulation-for-TBI_650x450
September 3, 2020
Could DBS of the Cerebellar Dentate Nucleus Enhance Post-TBI Rehabilitation?

Preclinical studies will assess whether method developed for stroke recovery curbs deficits after brain injury

20-NEU-1932968-sleep-apnea-in-women_650x450
August 12, 2020
Is Upper Airway Stimulation for OSA Being Denied to Many Patients Who Can Benefit Most?

Study finds high coverage denial for women, patients with prior oral appliance use

Ad