Locations:
Search IconSearch
April 3, 2024/Cancer

Mechanism of Kaposi’s Sarcoma-Associated Herpesvirus (KSHV) May Serve as Clue to More Effective Treatment

Cleveland Clinic researchers discover what drives – and what may halt – virus-induced cancer

viral-induced cancer

The herpesvirus KSHV causes several aggressive cancers, including Kaposi's sarcoma and primary effusion lymphoma. "Treatment for KSHV-induced cancers is limited to conventional chemotherapy, which suffers from drug resistance, so we're trying to find unique vulnerabilities of these cancers and target them through studying KSHV-host interactions," says Jun Zhao, PhD, who leads a research team at Cleveland Clinic Florida Research & Innovation Center.

Advertisement

Cleveland Clinic is a non-profit academic medical center. Advertising on our site helps support our mission. We do not endorse non-Cleveland Clinic products or services. Policy

The team’s research, which was recently published in Nature Communications, demonstrated that the human enzymes CDK6 and CAD are exploited by KSHV to promote cancer progression, and more importantly, how inhibiting this process with CDK6 and CAD inhibitors can reduce KSHV replication and shrink tumors in preclinical models.

Background

KSHV-induced cancers are prevalent in immunocompromised patients, such as elderly people with ‘immunosenescence’, patients with HIV/AIDS, and/or organ transplant recipients. B-cell malignancies originating from KSHV have poor prognoses, even with active chemotherapy treatments. The virus is also a culprit in causing KSHV inflammatory cytokine syndrome (KICS, a systemic elevation of cytokines that includes interleukin 6 and 10), which is associated with a very high mortality rate. To date, our understanding of how KSHV causes cancers is limited.

Key findings

The research team identified a mechanism for how KSHV manipulates cells by hijacking host proteins CDK6 and CAD, and how this mechanism is required to support viral replication and the growth of KSHV-infected cells. Based on this knowledge, they theorized that previously approved therapies that block CDK6 activity could be used to interrupt this manipulation by KSHV.

CDK6 inhibitors are already FDA approved to treat breast cancers. In cell culture models, the researchers found that CDK6 and CAD inhibitors blocked KSHV-driven cell metabolism and viral replication. This could be an important step to developing effective therapeutics for virus-induced cancers. Indeed, in preclinical models, both inhibitors were very effective at blocking the tumor progression of aggressive KSHV lymphomas.

Advertisement

"In our study, the cells carry a luminescence signal so we can visualize the tumor," explains Dr. Zhao. "After several weeks of treatment with the CAD/CDK6-blocking medication, that signal was virtually gone for some tumors. These studies show that doing so can help shrink tumors, overcome drug resistance and potentially help wake up the immune system.”

Discussion points

Metabolic reprogramming is a typical feature for cancer cells. What the research team was looking to demonstrate was that oncogenic viruses also reprogram metabolism by modifying key metabolic enzymes. “People used to think of metabolic enzymes as sort of passive workers that synthesize and metabolize small molecules,” explains Dr. Zhao. “But we found that, surprisingly, some metabolic enzymes, like CAD, are very active drivers that regulate signal transduction and promote a systematic metabolic reprogramming. Our thought was that oncogenic viruses may evolve to use them to their benefit.”

Indeed, the team found that KSHV manipulates CAD not only for nucleotide synthesis, but also for glucose consumption regulation, both of which contribute to virus replication and cancer formation. Understanding how these viral manipulation mechanisms work – and how they can be interrupted – may provide clues for tackling these difficult-to-treat diseases.

What’s next

These findings could lead to new therapies for viral-induced cancers as well as other types of cancer that use similar strategies to manipulate metabolic pathways. The next step would be to build on the team’s work by conducting clinical trials to validate their findings.

Advertisement

“We believe that applying inhibitors that target specific metabolic pathways may complement traditional treatments,” says Dr. Zhao. “Beyond that, these metabolic inhibitors may also be effective against infectious diseases, since more studies are showing that many viruses rely heavily on metabolic reprogramming to fuel replication.”

Advertisement

Related Articles

Interactive culinary medicine class
November 11, 2024/Cancer/Innovations
Integrative Oncology Improves Outcomes and Quality of Life

Combining mind, body and lifestyle practices in alignment with conventional cancer treatment

Pregnant woman
November 6, 2024/Cancer/News & Insight
Large Retrospective Study Finds Pregnancy Safe Among Young BRCA Carriers

Pregnancy did not appear to increase the risk of recurrence in patients or complications in their children

Young patient with cancer
October 25, 2024/Cancer/News & Insight
Multidisciplinary Care Model Supports Young People with Cancer

Integrated program addresses growing need for comprehensive cancer care among adolescents, young adults and adults under 50 with early onset cancers

Hurthle cell carcinoma
October 24, 2024/Cancer/News & Insight
Researchers Uncover Clues to Treating Rare Thyroid Cancer

Studies find mTOR inhibitor may play key role in treating Hurthle cell carcinoma

DNA
October 10, 2024/Cancer/Research
Blocking YES1 Protein Resensitizes Triple-Negative Breast Cancer to Treatment

Obstructing key protein allows for increased treatment uptake for taxane chemotherapy

Plan of care meeting
October 4, 2024/Cancer/Radiation Oncology
Five Years of Parallel Prospective Plan of Care Reviews

Radiation oncology department finds weekly plan of care meetings have multiple benefits

Ad