Locations:
Search IconSearch
April 3, 2024/Cancer

Mechanism of Kaposi’s Sarcoma-Associated Herpesvirus (KSHV) May Serve as Clue to More Effective Treatment

Cleveland Clinic researchers discover what drives – and what may halt – virus-induced cancer

viral-induced cancer

The herpesvirus KSHV causes several aggressive cancers, including Kaposi's sarcoma and primary effusion lymphoma. "Treatment for KSHV-induced cancers is limited to conventional chemotherapy, which suffers from drug resistance, so we're trying to find unique vulnerabilities of these cancers and target them through studying KSHV-host interactions," says Jun Zhao, PhD, who leads a research team at Cleveland Clinic Florida Research & Innovation Center.

Advertisement

Cleveland Clinic is a non-profit academic medical center. Advertising on our site helps support our mission. We do not endorse non-Cleveland Clinic products or services. Policy

The team’s research, which was recently published in Nature Communications, demonstrated that the human enzymes CDK6 and CAD are exploited by KSHV to promote cancer progression, and more importantly, how inhibiting this process with CDK6 and CAD inhibitors can reduce KSHV replication and shrink tumors in preclinical models.

Background

KSHV-induced cancers are prevalent in immunocompromised patients, such as elderly people with ‘immunosenescence’, patients with HIV/AIDS, and/or organ transplant recipients. B-cell malignancies originating from KSHV have poor prognoses, even with active chemotherapy treatments. The virus is also a culprit in causing KSHV inflammatory cytokine syndrome (KICS, a systemic elevation of cytokines that includes interleukin 6 and 10), which is associated with a very high mortality rate. To date, our understanding of how KSHV causes cancers is limited.

Key findings

The research team identified a mechanism for how KSHV manipulates cells by hijacking host proteins CDK6 and CAD, and how this mechanism is required to support viral replication and the growth of KSHV-infected cells. Based on this knowledge, they theorized that previously approved therapies that block CDK6 activity could be used to interrupt this manipulation by KSHV.

CDK6 inhibitors are already FDA approved to treat breast cancers. In cell culture models, the researchers found that CDK6 and CAD inhibitors blocked KSHV-driven cell metabolism and viral replication. This could be an important step to developing effective therapeutics for virus-induced cancers. Indeed, in preclinical models, both inhibitors were very effective at blocking the tumor progression of aggressive KSHV lymphomas.

Advertisement

"In our study, the cells carry a luminescence signal so we can visualize the tumor," explains Dr. Zhao. "After several weeks of treatment with the CAD/CDK6-blocking medication, that signal was virtually gone for some tumors. These studies show that doing so can help shrink tumors, overcome drug resistance and potentially help wake up the immune system.”

Discussion points

Metabolic reprogramming is a typical feature for cancer cells. What the research team was looking to demonstrate was that oncogenic viruses also reprogram metabolism by modifying key metabolic enzymes. “People used to think of metabolic enzymes as sort of passive workers that synthesize and metabolize small molecules,” explains Dr. Zhao. “But we found that, surprisingly, some metabolic enzymes, like CAD, are very active drivers that regulate signal transduction and promote a systematic metabolic reprogramming. Our thought was that oncogenic viruses may evolve to use them to their benefit.”

Indeed, the team found that KSHV manipulates CAD not only for nucleotide synthesis, but also for glucose consumption regulation, both of which contribute to virus replication and cancer formation. Understanding how these viral manipulation mechanisms work – and how they can be interrupted – may provide clues for tackling these difficult-to-treat diseases.

What’s next

These findings could lead to new therapies for viral-induced cancers as well as other types of cancer that use similar strategies to manipulate metabolic pathways. The next step would be to build on the team’s work by conducting clinical trials to validate their findings.

Advertisement

“We believe that applying inhibitors that target specific metabolic pathways may complement traditional treatments,” says Dr. Zhao. “Beyond that, these metabolic inhibitors may also be effective against infectious diseases, since more studies are showing that many viruses rely heavily on metabolic reprogramming to fuel replication.”

Advertisement

Related Articles

X-ray of pelvis implant
February 17, 2025/Orthopaedics/Tumor
3D-Printed Pelvis Implant Restores Function After Sarcoma Resection

Personalized reconstruction is an alternative to leg amputation or flail limb

Dr. Dermawan
December 24, 2024/Cancer/News & Insight
New Genomic Models for Leiomyosarcoma Treatment (Podcast)

Soft tissue pathologist discusses research into incorporating genomic data to improve risk stratification

Incision after surgery to remove sarcoma
November 13, 2024/Orthopaedics/Tumor
Up to 94% Accuracy at Predicting Wound Complications After Sarcoma Resection

Machine learning models assess intraoperative tissue perfusion

X-ray of a tumor in the bone of a child's arm
October 3, 2024/Orthopaedics/Tumor
Is It Sarcoma? New ‘Lumps and Bumps’ Clinic More Quickly Triages Pediatric Tumors

For kids with painful, growing lesions in the arm, leg or pelvis

X-ray showing leg bones
March 6, 2024/Orthopaedics/Tumor
The Latest in Limb-Sparing Techniques for Pediatric Patients With Sarcoma

Biologic approaches, growing implants and more

Large B-cell lymphoma (DLBCL)
January 18, 2024/Cancer/Blood Cancers
Trial for Patients 75 and Older with Diffuse Large B-Cell Lymphoma Helps Address Care Inequities

Multiple Cleveland Clinic sites to participate in National Cancer Institute trial comparing treatment regimens for newly diagnosed patients

CAR T-cells
December 15, 2023/Cancer/Research
CAR T-Cell Therapy Effective in Refractory Double-Hit/Triple-Hit Lymphoma

Two thirds of patients responded to CAR T-cell therapy

23-CHP-3653459 CQD Murphy – SBRT and the Immune System
May 8, 2023/Cancer
Clinical Trial Explores SBRT and the Immune System in Pediatric Sarcoma

Previous studies, trial aims and the potential role of immunotherapy

Ad