February 15, 2017/Neurosciences/Research

Using a Precision Medicine Approach to Improve Rehabilitative Care in Stroke

First attempt to develop targeted brain stimulation therapy in this setting

16-NEU-792-Plow-650×450

By Ela Plow, PhD, PT; Yin-Liang Lin, PhD; Kelsey Potter-Baker, PhD; Vishwanath Sankarasubramanian, PhD; David Cunningham, PhD; and Andre Machado, MD, PhD

Advertisement

Cleveland Clinic is a non-profit academic medical center. Advertising on our site helps support our mission. We do not endorse non-Cleveland Clinic products or services. Policy

One of the most prominent recent initiatives of the National Institutes of Health (NIH) is the Precision Medicine Initiative, launched in 2015. The effort is founded on the idea that the likelihood and extent of recovery differ among individuals, with individual characteristics dictating how much recovery can be achieved with therapies. Greater emphasis is therefore placed on customizing interventions to individual characteristics.

Applying precision medicine to post-stroke rehabilitation

Our group at Cleveland Clinic has embraced the founding premise of the Precision Medicine Initiative to develop targeted rehabilitative therapies for individuals suffering from stroke. As survival rates after stroke continue to improve, more patients live longer lives facing chronic impairments. One of the most debilitating is weakness of the upper extremity, with up to 70 percent of affected patients experiencing lifelong difficulties in activities of daily living.

Improving the effectiveness of rehabilitation appears to be central to any solution. Pairing additional therapies within the limited time allotted for rehabilitation can supplement benefits without adding to stroke’s cost burden. One such promising adjunct involves stimulation of the brain. Delivering electrical stimulation to residual, surviving areas in the lesioned hemisphere is believed to enhance mechanisms of plasticity — i.e., restorative processes that contribute to recovery. Stimulation has become even more popular since the advent of noninvasive techniques applying currents from atop the scalp/skull without requiring surgery.

Targeting stimulation for efficacy regardless of severity

Although several hundred studies have claimed that stimulation can dramatically enhance outcomes of the weak upper extremity in stroke survivors, this therapy is not yet accepted for use in outpatient clinics. Stimulation-associated improvements vary across individuals. Those who are mildly affected are able to experience substantial outcome gains, but more-disadvantaged patients remain compromised in use of their paretic upper limb. Our contribution has been to develop targeted brain stimulation techniques that can dramatically enhance rehabilitation outcomes in patients with minimal as well as serious disability.

Our approach to developing targeted or tailored techniques has been unique. Before predicting a priori who should receive which type of stimulation, we have adopted a data-driven, post hoc empirical strategy.

Over the past few years, our findings and those of others led us to realize that traditional stimulation fails to affect outcomes because it relies on the potential of residual networks, which are substantially damaged in severely affected patients. These patients cannot rely on residual networks in the lesioned hemisphere and must depend on helpful changes or plasticity occurring in the intact hemisphere. Yet the intact hemisphere can reroute alternate pathways to move the ipsilateral paretic limb. Moreover, the intact hemisphere can influence activity of the lesioned hemisphere via the corpus callosum to enhance its ability to drive movement of the severely affected limb.

Given how patients with minimal damage can exploit the potential for plasticity available within residual networks of the lesioned hemisphere, as well as how patients with severe damage rely on plasticity offered by the intact hemisphere, we’ve proposed that targeted stimulation in stroke should involve offering traditional stimulation to patients with mild functional disability and stimulation of the alternate, intact hemisphere to those with severe disability.

New insights for stratifying patients to stimulation type

Yet the biggest roadblock is lack of understanding of what constitutes severe disability. At what level of damage and deficit do patients fail to rely on residual areas in the lesioned hemisphere and need to rely on the intact hemisphere? How does one stratify patients for one or the other type of stimulation therapy? Our empirical, data-driven approach has offered the first solution, as indicated by findings presented at the 2015 annual meeting of the Society for Neuroscience.1,2

Advertisement

Using a crossover study design, we enrolled stroke patients across the spectrum of severity of upper limb impairment to receive stimulation to traditional targets in the lesioned hemisphere and, on a separate day, stimulation to the intact hemisphere. Ours is the first group to stimulate activity of the intact hemisphere on the assumption that it serves as a critical resource for recovery in severely disabled patients.

We allotted an adequate gap between sessions so the effects of stimulating one region did not influence effects of stimulating the other. We documented stroke-related damage and impairment at baseline and then measured improvements in patients’ ability to move their paretic limb. Damage was measured using diffusion-weighted MRI, which depicts damage to the structure of pathways (Figure 1).

The physiologic condition of pathways was assessed using transcranial magnetic stimulation (TMS), which can study conduction of emergent pathways by delivering brief currents to motor areas in the brain. Conduction is indexed on the basis of movement potentials evoked with TMS in muscles of the paretic limb.

16-NEU-792-Plow-inset1

Figure 1. Damage in our study was measured using diffusion tensor imaging (DTI) (left), and physiologic condition of pathways was assessed using transcranial magnetic stimulation (right).

Our findings reveal that functional improvements associated with traditional stimulation and stimulation of the intact hemisphere share an inverse relationship. Whereas functional improvements associated with traditional stimulation are reduced with greater degrees of damage and impairment, improvements associated with stimulation of the intact hemisphere increase. Overall, as anticipated, mildly affected patients recovered the most with traditional stimulation while severely affected patients recovered with stimulation of the intact hemisphere.

First attempt to develop targeted stimulation for stroke

The unique aspect of our findings is that we have established that the relationship between improvements associated with alternate forms of stimulation is inverse. We are thus able to identify the intersection, or cutoff level, of damage and impairment at which to stratify candidates for traditional stimulation versus stimulation of the intact hemisphere (Figure 2).

16-NEU-792-Plow-inset2

Figure 2. Our research establishing the inverse relationship between outcomes associated with alternate forms of stimulation can serve to stratify patients to therapy according to the severity of their functional impairment.

This represents what we believe is the first attempt to develop targeted brain stimulation therapy for stroke. Not only can mildly affected patients achieve gains of greater than 30 percent in upper limb outcomes with traditional stimulation, but for the first time severely affected patients are likewise able to achieve greater than 30 percent gains with stimulation of the intact hemisphere.

Advertisement

In this way, our premise and findings are highly aligned with NIH’s Precision Medicine Initiative. By accounting for an individual’s damage and impairment following stroke, we can stratify that patient a priori for tailored stimulation so that all types of patients have an equal opportunity for fuller recovery.

This work has been funded by the NIH, the American Heart Association and the American Stroke Association.

References

  1. Sankarasubramanian V, Varnerin N, Cunningham D, et al. Employing patients’ individual characteristics to derive personalized brain stimulation therapies. Poster 228.24/I35 at the annual meeting of the Society for Neuroscience; Oct. 18, 2015; Chicago.
  2. Plow EB, Varnerin N, Sankarasubramanian V, et al. Rethinking brain stimulation in stroke rehabilitation: Why higher-motor areas might be better alternatives for patients with greater disability. Presentation 560.06 at the Society for Neuroscience Nanosymposium; Oct. 20, 2015; Chicago.

Dr. Plow is an assistant staff member in Cleveland Clinic Lerner Research Institute’s Department of Biomedical Engineering with an appointment in the Department of Physical Medicine and Rehabilitation.

Drs. Lin, Potter-Baker, Sankarasubramanian and Cunningham are postdoctoral fellows in Dr. Plow’s lab.

Dr. Machado is Chairman of Cleveland Clinic Neurological Institute and a neurosurgeon with specialty interests in neuromodulation and deep brain stimulation.

Related Articles

illustration of an alzheimer brain and a packet of sildenafil pills
March 11, 2024/Neurosciences/Research
Sildenafil as an Alzheimer’s Candidate Drug: Further Support From Insurance Database and Mechanistic Studies

Real-world claims data and tissue culture studies set the stage for randomized clinical testing

22-NEU-2959102-CQD-Hero-650×450
June 15, 2022/Neurosciences/Research
MINDS Study Will Assess Lifestyle Interventions for Slowing Brain Pathology in Preclinical Stages

New grant-funded investigation illustrates impact and reach of Cleveland Clinic Brain Study

22-NEU-2671014-CQD-650×450-Type
March 9, 2022/Neurosciences/Research
A Closer Look at the Cleveland Clinic Brain Study

How the new longitudinal investigation could become the Framingham Heart Study of brain health

20-NEU-1959738 powered-exoskeleton-for-gait-training_650x450
October 23, 2020/Neurosciences/Research
Study Signals Potential of Powered Exoskeleton for Gait Training in Multiple Sclerosis

Pilot findings show good patient acceptance and safety, early hints of efficacy

20-NEU-1990660-sleep-symptoms-in-health-workers-650×450
October 21, 2020/Neurosciences/Research
Electronic Screening for Sleep Disorders Among Healthcare Workers Is Feasible – and Sorely Needed

Study finds high prevalence of symptoms, willingness to seek treatment

20-NEU-1946228 neurofilaments_650x450
September 9, 2020/Neurosciences/Research
Serum Neurofilament Light as a Progressive MS Biomarker: Guideposts for the Road Ahead

Panel outlines research priorities around a promising alternative to imaging markers

20-NEU-1951118_Impella-temporary-LVAD_650x450_ (1)
September 4, 2020/Neurosciences/Research
Study Finds Clues to Acute Neurologic Events With Short-Term Impella Cardiac Support

Suspected factors include antithrombotic intensity, time on device, presence of thrombocytopenia

20-NEU-1929179 deep-brain-stimulation-for-TBI_650x450
September 3, 2020/Neurosciences/Research
Could DBS of the Cerebellar Dentate Nucleus Enhance Post-TBI Rehabilitation?

Preclinical studies will assess whether method developed for stroke recovery curbs deficits after brain injury

Ad