December 6, 2022

Phase 1 Trial Shows Drug-Resistant Immunotherapy for Glioblastoma Is Safe and Feasible

Intracranial injection of supercharged immune cells proceeds to phase 2 testing


Immunotherapy has improved the outcomes for many types of cancer, but so far it has not shown benefits in treating glioblastoma. Now a new study is taking a fresh look at its potential, with a novel approach that involves injecting supercharged immune cells directly into the tumor cavity in the brain.


Cleveland Clinic is a non-profit academic medical center. Advertising on our site helps support our mission. We do not endorse non-Cleveland Clinic products or services. Policy

The phase 1 clinical trial found that the treatment, called drug-resistant immunotherapy, was safe and feasible in patients with newly diagnosed glioblastoma, with no significant added side effects. A phase 2 clinical trial is scheduled to launch soon at Cleveland Clinic and other institutions.

“It is a unique approach, and we are excited to offer it to more patients in the phase 2 trial,” says the study’s first author, Mina Lobbous, MD, MSPH, a neuro-oncologist in Cleveland Clinic’s Rose Ella Burkhardt Brain Tumor and Neuro-Oncology Center. Results of the trial were presented at the American Society of Clinical Oncology annual meeting earlier this year. The research was started at the University of Alabama at Birmingham and was co-led by Dr. Lobbous.

How drug-resistant immunotherapy works

Glioblastoma, the most common malignant brain tumor in U.S. adults, is not curable. Standard of care includes surgical resection of the tumor, followed by radiation therapy and chemotherapy. However, even with this multimodality approach, tumors eventually recur and lead to death.

For the new treatment, a Rickman catheter is implanted in the tumor cavity during the surgical resection. After the patient has recovered from the procedure, physicians collect the patient’s own immune cells and genetically modify them — specifically the gamma delta T cells — to be stronger and resistant to chemotherapy (i.e., drug-resistant immunotherapy). Then, while the patient is undergoing standard-of-care radiation therapy and chemotherapy (temozolomide), the drug-resistant immune cells are injected through the catheter into the tumor cavity at each 28-day maintenance cycle of temozolomide.


“While the tumor cells are already stressed from the chemotherapy, these modified T cells go in and attack,” Dr. Lobbous explains.

A similar approach using drug-resistant immunotherapy is being tested in leukemia patients, using donor immune cells.

Encouraging results

In the phase 1 trial, which is still ongoing at the University of Alabama at Birmingham, eight patients were dosed. In these patients, the modified immune cells showed manageable toxicity, with no dose-limiting toxicities and no worsening of side effects with repeated dosing.

Researchers saw evidence that the modified T cells were still present in the resected tumor tissue even 148 days after a single infusion. Patients who received the treatment achieved longer-than-projected progression-free survival (PFS) based on their age and status, with all patients exceeding the seven-month median PFS associated with the standard of care.


“This shows that it is safe and feasible to deliver,” Dr. Lobbous notes. “In fact, most of the side effects we have seen were related to the chemotherapy itself.”

On to phase 2

The phase 2 clinical trial will expand investigation of this therapy to more patients across multiple sites, including Cleveland Clinic. Future studies will also look at the effectiveness of this treatment using donor immune cells.

“We’re hopeful that this approach will ultimately provide a survival benefit to our patients and also help us understand the unique features of these tumors, including why glioblastoma has been resistant to immunotherapy,” Dr. Lobbous concludes.

Related Articles

January 24, 2023
Study Explores Optimal Dosage of Novel Combination Therapy for Recurrent Glioblastoma

Focused ultrasound is paired with ALA to utilize sonodynamic therapy to target cancer cells

December 20, 2022
Survival Is Associated With Subsets of T Cells in Recurrent Glioblastoma Treated With SL-701

Can T-cell immunophenotyping help inform treatment decisions?

October 6, 2022
Belzutifan for VHL-Associated CNS Hemangioblastoma: Here’s What Early Radiologic Response Looks Like

First reported imaging findings show swift reductions in perilesional edema, tumor size

How antibody drug conjugates work
February 13, 2024
Real-World Use of Trastuzumab Deruxtecan

Key learnings from DESTINY trials

February 7, 2024
Advances in Bone Marrow Transplant Have Improved Outcomes in Fanconi Anemia

Overall survival in patients treated since 2008 is nearly 20% higher than in earlier patients

February 5, 2024
Haploidentical Bone Marrow Transplant Has Durable Engraftment in Patients With Sickle Cell Disease

Two-year event-free survival comparable to matched sibling donor myeloablative transplant

February 1, 2024
Possibilities of CRISPR Technology (Podcast)

Gene editing technology offers promise for treating multiple myeloma and other hematologic malignancies, as well as solid tumors

January 30, 2024
Gene Therapy Trials Show Positive Results in Sickle Cell Disease and Thalassemia

First-in-human trials of CRISPR-Cas12a gene editing demonstrate safety and meaningful event-free survival