Locations:
Search IconSearch
September 20, 2018/Primary Care

Evaluating Suspected Pulmonary Hypertension: A Structured Approach

A diagnostic approach

pulmonary hypertension

By Akshay Bhatnagar, MD, Raed Dweik, MD, and Neal F. Chaisson, MD

Advertisement

Cleveland Clinic is a non-profit academic medical center. Advertising on our site helps support our mission. We do not endorse non-Cleveland Clinic products or services. Policy

Pulmonary arterial hypertension (PAH) is a hemodynamic disorder that affects small and medium-size pulmonary arteries through cellular proliferation and luminal narrowing. Increased pulmonary vascular resistance causes restricted blood flow in these arteries, leading to elevated pulmonary arterial pressure and afterload on the right ventricle. Despite advances in therapy, death usually occurs as a result of right ventricular failure.

However, PAH is neither the only form of pulmonary hypertension nor the most common. Pulmonary hypertension, defined as an elevated pulmonary arterial pressure (≥ 25 mm Hg) on right heart catheterization, has a myriad of causes. The World Health Organization (WHO) classifies pulmonary hypertension into 5 separate groups based on the pathophysiologic mechanism:

  • Group 1 — PAH, due to narrowed pulmonary arteries
  • Group 2 — due to left heart disease
  • Group 3 — due to lung disease or hypoxia, or both
  • Group 4 — due to chronic thromboembolism or other pulmonary artery obstruction
  • Group 5 — due to uncertain or multifactorial causes

Experts recognize the morbidity and mortality associated with pulmonary hypertension now more than in the past, and they emphasize recognizing it early. Guidelines for its diagnosis and treatment were updated in 2015.

Diagnostic evaluation of suspected pulmonary hypertension

Accurate diagnosis and classification of pulmonary hypertension requires both a high level of suspicion for the disease and appropriate diagnostic testing. The above figure depicts current recommendations for evaluating a patient suspected of having pulmonary hypertension. We use this algorithm to guide proper risk stratification, classification, and invasive testing.

Advertisement

Clinical manifestations

Clinical manifestations of pulmonary hypertension are invariably related to right ventricular dysfunction. As pulmonary arterial pressure and pulmonary vascular resistance increase, the right ventricle initially compensates to preserve cardiac output through up-regulation of sympathetic responses, dilation and myocardial hypertrophy. For this reason, early clinical signs are either absent or nonspecific. Eventually, however, the right ventricle can no longer compensate, and cardiac output declines.

Symptoms and signs. The first symptoms such as exertional dyspnea, fatigue and lightheadedness usually arise in situations that call for increased cardiac output. As right ventricular function worsens, symptoms start to occur at rest, and signs of increased right ventricular preload appear, such as abdominal and lower-extremity edema and pericardial effusion. Syncope is a sign of severe right ventricular dysfunction.

Physical examination. Look for signs of increased right ventricular loading and failure, e.g.:

  • An accentuated intensity and persistent splitting of the second heart sound
  • A prominent parasternal heave
  • A prominent jugular “a” wave
  • A systolic murmur along the left sternal border at the fourth intercostal space, which may worsen with breath-holding
  • Pitting lower-extremity edema
  • Hepatomegaly
  • Hepatojugular reflux
  • Hepatic pulsatility.

Echocardiography in suspected pulmonary hypertension

Since the early signs and symptoms of pulmonary hypertension are often nonspecific, the diagnosis is often delayed, and it is first suspected when transthoracic echocardiography reveals signs of right ventricular dysfunction. Transthoracic echocardiography is relatively inexpensive, noninvasiv, and reproducible, and it can give estimated values of several measures of right ventricular function, size and pressure.

Advertisement

Echocardiographic views of a patient with pulmonary hypertension (left) and a patient without (right). Note the increased right ventricular-left ventricular ratio and right atrial enlargement in the patient with pulmonary hypertension.

Many practitioners rely heavily on the estimated right ventricular systolic pressure in diagnosing pulmonary hypertension. In theory, this number should be nearly the same as the pulmonary arterial systolic pressure. However, technical and patient-related aspects of transthoracic echocardiography often limit accurate measurement of the right ventricular systolic pressure, and readings often differ from those measured with right heart catheterization.

The 2015 European Respiratory Society and European Society of Cardiology guidelines recommend using additional echocardiographic variables to determine the probability that a patient has pulmonary hypertension. While this recommendation is largely based on expert opinion, it supports the notion that right ventricular systolic pressure alone is not enough to determine the probability of pulmonary hypertension. Accordingly, patients with a right ventricular systolic pressure that is significantly elevated (> 50 mm Hg) or moderately elevated (> 40 mm Hg), along with other signs of right ventricular dysfunction (e.g., a dilated right ventricle or atrium, septal flattening), should be considered for additional diagnostic testing.

Future posts will discuss WHO Groups 2-5.

Dr. Bhatnagar is staff in the Department of Regional Anesthesiology. Dr. Dweik is Interim Institute Chair, Respiratory Institute. Dr. Chaisson is staff in the Departments of Critical Care Medicine and Pulmonary Medicine, Respiratory Institute.

Advertisement

This abridged article originally appeared in Cleveland Clinic Journal of Medicine.

Advertisement

Related Articles

Young man receiving injection with hesitation
Meeting the Challenge of Vaccine Hesitancy

Trust in clinicians creates opportunities to listen and educate

medical illustration of thrombosis
July 8, 2024/Primary Care/Research
Management of Lower-Extremity Venous Thromboembolism

An updated review of risk factors, management and treatment considerations

Osteopathic practitioner manipulating patient's face
Case: Osteopathic Manipulative Treatment Provides Eye-Symptom Relief

OMT may be right for some with Graves’ eye disease

Photo of patient injecting drug into stomach
February 22, 2024/Primary Care/Research
Cleveland Clinic Study Identifies Factors Associated With Long-Term Use of Popular Anti-Obesity Medications

Perserverance may depend on several specifics, including medication type, insurance coverage and medium-term weight loss

Global Healthcare
July 28, 2023/Primary Care
How Does Climate Change Impact Our Patients?

Integrate climate-related health information and counseling into your practice

Asthma
November 9, 2021/Primary Care
Outpatient Management of Asthma in Adults

A snapshot of the 2020 GINA report

21-PUL-2475558 The Current State of Tobacco Cessation_CQD
November 5, 2021/Primary Care
Pharmacological Approaches to Tobacco Cessation

A review of available interventions

Chest x-ray adolescent vaping injury
November 3, 2021/Primary Care
The Current State of Tobacco Cessation: E-Cigarettes

Abstinence from combustibles, dependence on vaping

Ad